The edge-connectivity of vertex-transitive hypergraphs

被引:0
|
作者
Burgess, Andrea C. [1 ]
Luther, Robert D. [2 ]
Pike, David A. [2 ]
机构
[1] Univ New Brunswick, Dept Math & Stat, St John, NB, Canada
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
connectivity; hypergraphs; vertex-transitivity; GRAPHS;
D O I
10.1002/jgt.23035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph or hypergraph is said to be vertex-transitive if its automorphism group acts transitively upon its vertices. A classic theorem of Mader asserts that every connected vertex-transitive graph is maximally edge-connected. We generalise this result to hypergraphs and show that every connected linear uniform vertex-transitive hypergraph is maximally edge-connected. We also show that if we relax either the linear or uniform conditions in this generalisation, then we can construct examples of vertex-transitive hypergraphs which are not maximally edge-connected.
引用
收藏
页码:252 / 259
页数:8
相关论文
共 50 条
  • [41] On Isomorphisms of Vertex-transitive Graphs
    Chen, Jing
    Xia, Binzhou
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):
  • [42] On the classification of vertex-transitive structures
    John Clemens
    Samuel Coskey
    Stephanie Potter
    Archive for Mathematical Logic, 2019, 58 : 565 - 574
  • [43] Increasing the edge-connectivity by contracting a vertex subset in graphs
    Nagamochi, H
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2006, E89D (02): : 744 - 750
  • [44] The vertex-transitive and edge-transitive tetravalent graphs of square-free order
    Li, Cai Heng
    Lu, Zai Ping
    Wang, Gai Xia
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (01) : 25 - 50
  • [45] Local edge-connectivity augmentation in hypergraphs is NP-complete
    Kiraly, Zoltan
    Cosh, Ben
    Jackson, Bill
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (06) : 723 - 727
  • [46] Presentations for vertex-transitive graphs
    Georgakopoulos, Agelos
    Wendland, Alex
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (03) : 795 - 826
  • [47] Classification of Vertex-Transitive Zonotopes
    Martin Winter
    Discrete & Computational Geometry, 2021, 66 : 1446 - 1462
  • [48] Mobility of vertex-transitive graphs
    Potocnik, Primoz
    Sajna, Mateja
    Verret, Gabriel
    DISCRETE MATHEMATICS, 2007, 307 (3-5) : 579 - 591
  • [49] Classification of Vertex-Transitive Zonotopes
    Winter, Martin
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (04) : 1446 - 1462
  • [50] An overview on vertex stabilizers in vertex-transitive graphs
    Spiga, Pablo
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2025, 18 (01): : 327 - 346