The edge-connectivity of vertex-transitive hypergraphs

被引:0
|
作者
Burgess, Andrea C. [1 ]
Luther, Robert D. [2 ]
Pike, David A. [2 ]
机构
[1] Univ New Brunswick, Dept Math & Stat, St John, NB, Canada
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
connectivity; hypergraphs; vertex-transitivity; GRAPHS;
D O I
10.1002/jgt.23035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph or hypergraph is said to be vertex-transitive if its automorphism group acts transitively upon its vertices. A classic theorem of Mader asserts that every connected vertex-transitive graph is maximally edge-connected. We generalise this result to hypergraphs and show that every connected linear uniform vertex-transitive hypergraph is maximally edge-connected. We also show that if we relax either the linear or uniform conditions in this generalisation, then we can construct examples of vertex-transitive hypergraphs which are not maximally edge-connected.
引用
收藏
页码:252 / 259
页数:8
相关论文
共 50 条
  • [31] Vertex-transitive graphs and digraphs
    Scapellato, R
    GRAPH SYMMETRY: ALGEBRAIC METHODS AND APPLICATIONS, 1997, 497 : 319 - 378
  • [32] Limits of vertex-transitive graphs
    Giudici, Michael
    Li, Cai Heng
    Praeger, Cheryl E.
    Seress, Akos
    Trofimov, Vladimir
    ISCHIA GROUP THEORY 2004, PROCEEDINGS, 2006, 402 : 159 - +
  • [33] Vertex-transitive CIS graphs
    Dobson, Edward
    Hujdurovic, Ademir
    Milanic, Martin
    Verret, Gabriel
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 44 : 87 - 98
  • [34] Exponents of vertex-transitive digraphs
    Shen, J
    Gregory, DA
    DISCRETE MATHEMATICS, 2000, 212 (03) : 245 - 255
  • [35] A CONSTRUCTION FOR VERTEX-TRANSITIVE GRAPHS
    ALSPACH, B
    PARSONS, TD
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (02): : 307 - 318
  • [36] On the classification of vertex-transitive structures
    Clemens, John
    Coskey, Samuel
    Potter, Stephanie
    ARCHIVE FOR MATHEMATICAL LOGIC, 2019, 58 (5-6) : 565 - 574
  • [37] The vertex-transitive and edge-transitive tetravalent graphs of square-free order
    Cai Heng Li
    Zai Ping Lu
    Gai Xia Wang
    Journal of Algebraic Combinatorics, 2015, 42 : 25 - 50
  • [38] Presentations for vertex-transitive graphs
    Agelos Georgakopoulos
    Alex Wendland
    Journal of Algebraic Combinatorics, 2022, 55 : 795 - 826
  • [39] STRUCTURE OF VERTEX-TRANSITIVE GRAPHS
    GREEN, AC
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (01) : 1 - 11
  • [40] VERTEX-TRANSITIVE MAPS ON A TORUS
    Such, O.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2011, 80 (01): : 1 - 30