Slow entropy of some combinatorial constructions

被引:0
|
作者
Banerjee, Shilpak [1 ]
Kunde, Philipp [2 ]
Wei, Daren [3 ]
机构
[1] Indraprastha Inst Informat Technol Delhi IIIT Delh, Dept Math, Okhla Ind Estate,Phase 3, New Delhi 110020, India
[2] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[3] Hebrew Univ Jerusalem, Einstein Inst Math, IL-9190401 Jerusalem, Israel
基金
欧盟地平线“2020”; 欧洲研究理事会; 美国国家科学基金会;
关键词
slow entropy; finite rank; rigid; cyclic approximation; approximation-by-conjugation method; OPERATOR METHODS; INVARIANTS; COMPLEXITY; DIMENSION; GROWTH; RATES;
D O I
10.1088/1361-6544/acc920
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Measure-theoretic slow entropy is a more refined invariant than the classical measure-theoretic entropy to characterize the complexity of dynamical systems with subexponential growth rates of distinguishable orbit types. In this paper we prove flexibility results for the values of upper and lower polynomial slow entropy of rigid transformations as well as maps admitting a good cyclic approximation. Moreover, we show that there cannot exist a general upper bound on the lower measure-theoretic slow entropy for systems of finite rank.
引用
收藏
页码:2923 / 2974
页数:52
相关论文
共 50 条