Slow entropy of some combinatorial constructions

被引:0
|
作者
Banerjee, Shilpak [1 ]
Kunde, Philipp [2 ]
Wei, Daren [3 ]
机构
[1] Indraprastha Inst Informat Technol Delhi IIIT Delh, Dept Math, Okhla Ind Estate,Phase 3, New Delhi 110020, India
[2] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[3] Hebrew Univ Jerusalem, Einstein Inst Math, IL-9190401 Jerusalem, Israel
基金
欧盟地平线“2020”; 欧洲研究理事会; 美国国家科学基金会;
关键词
slow entropy; finite rank; rigid; cyclic approximation; approximation-by-conjugation method; OPERATOR METHODS; INVARIANTS; COMPLEXITY; DIMENSION; GROWTH; RATES;
D O I
10.1088/1361-6544/acc920
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Measure-theoretic slow entropy is a more refined invariant than the classical measure-theoretic entropy to characterize the complexity of dynamical systems with subexponential growth rates of distinguishable orbit types. In this paper we prove flexibility results for the values of upper and lower polynomial slow entropy of rigid transformations as well as maps admitting a good cyclic approximation. Moreover, we show that there cannot exist a general upper bound on the lower measure-theoretic slow entropy for systems of finite rank.
引用
收藏
页码:2923 / 2974
页数:52
相关论文
共 50 条
  • [21] Combinatorial constructions of packings in Grassmannian spaces
    Tao Zhang
    Gennian Ge
    Designs, Codes and Cryptography, 2018, 86 : 803 - 815
  • [22] Combinatorial constructions of packings in Grassmannian spaces
    Zhang, Tao
    Ge, Gennian
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (04) : 803 - 815
  • [23] Finite field constructions of combinatorial arrays
    Moura, Lucia
    Mullen, Gary L.
    Panario, Daniel
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 78 (01) : 197 - 219
  • [24] Combinatorial constructions for optimal supersaturated designs
    Fang, KT
    Ge, GN
    Liu, MQ
    Qin, H
    DISCRETE MATHEMATICS, 2004, 279 (1-3) : 191 - 202
  • [25] Combinatorial designs and related computational constructions
    Adams, P
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (03) : 521 - 523
  • [26] Finite field constructions of combinatorial arrays
    Lucia Moura
    Gary L. Mullen
    Daniel Panario
    Designs, Codes and Cryptography, 2016, 78 : 197 - 219
  • [27] Entropy and the combinatorial dimension
    Mendelson, S
    Vershynin, R
    INVENTIONES MATHEMATICAE, 2003, 152 (01) : 37 - 55
  • [28] Entropy and the combinatorial dimension
    S. Mendelson
    R. Vershynin
    Inventiones mathematicae, 2003, 152 : 37 - 55
  • [29] Combinatorial constructions for optimal splitting authentication codes
    Ge, GN
    Miao, Y
    Wang, LH
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 18 (04) : 663 - 678
  • [30] Combinatorial and Geometric Constructions Associated with the Kostant Cascade
    Panyushev, Dmitri I.
    JOURNAL OF LIE THEORY, 2023, 33 (02) : 497 - 526