Multi-Task Consistency for Active Learning

被引:0
|
作者
Hekimoglu, Aral [1 ]
Friedrich, Philipp [2 ]
Zimmer, Walter [1 ]
Schmidt, Michael [2 ]
Marcos-Ramiro, Alvaro [2 ]
Knoll, Alois [1 ]
机构
[1] Techn Univ Munich, Munich, Germany
[2] BMW Grp, Munich, Germany
关键词
D O I
10.1109/ICCVW60793.2023.00366
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning-based solutions for vision tasks require a large amount of labeled training data to ensure their performance and reliability. In single-task vision-based settings, inconsistency-based active learning has proven to be effective in selecting informative samples for annotation. However, there is a lack of research exploiting the inconsistency between multiple tasks in multi-task networks. To address this gap, we propose a novel multi-task active learning strategy for two coupled vision tasks: object detection and semantic segmentation. Our approach leverages the inconsistency between them to identify informative samples across both tasks. We propose three constraints that specify how the tasks are coupled and introduce a method for determining the pixels belonging to the object detected by a bounding box, to later quantify the constraints as inconsistency scores. To evaluate the effectiveness of our approach, we establish multiple baselines for multi-task active learning and introduce a new metric, mean Detection Segmentation Quality (mDSQ), tailored for the multi-task active learning comparison that addresses the performance of both tasks. We conduct extensive experiments on the nuImages and A9 datasets, demonstrating that our approach out-performs existing state-of-the-art methods by up to 3.4% mDSQ on nuImages. Our approach achieves 95% of the fully-trained performance using only 67% of the available data, corresponding to 20% fewer labels compared to random selection and 5% fewer labels compared to state-of-the-art selection strategy. The code is available at https: //github.com/aralhekimoglu/BoxMask.
引用
收藏
页码:3407 / 3416
页数:10
相关论文
共 50 条
  • [31] Task Switching Network for Multi-task Learning
    Sun, Guolei
    Probst, Thomas
    Paudel, Danda Pani
    Popovic, Nikola
    Kanakis, Menelaos
    Patel, Jagruti
    Dai, Dengxin
    Van Gool, Luc
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8271 - 8280
  • [32] Multi-Task Multi-Sample Learning
    Aytar, Yusuf
    Zisserman, Andrew
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT III, 2015, 8927 : 78 - 91
  • [33] Learning Task Relatedness in Multi-Task Learning for Images in Context
    Strezoski, Gjorgji
    van Noord, Nanne
    Worring, Marcel
    ICMR'19: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2019, : 78 - 86
  • [34] Learning Task Relational Structure for Multi-Task Feature Learning
    Wang, De
    Nie, Feiping
    Huang, Heng
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1239 - 1244
  • [35] Learning Tree Structure in Multi-Task Learning
    Han, Lei
    Zhang, Yu
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 397 - 406
  • [36] Learning to Resolve Conflicts in Multi-Task Learning
    Tang, Min
    Jin, Zhe
    Zou, Lixin
    Liang Shiuan-Ni
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT III, 2023, 14256 : 477 - 489
  • [37] Multi-task Learning with Modular Reinforcement Learning
    Xue, Jianyong
    Alexandre, Frederic
    FROM ANIMALS TO ANIMATS 16, 2022, 13499 : 127 - 138
  • [38] Hierarchical Prompt Learning for Multi-Task Learning
    Liu, Yajing
    Lu, Yuning
    Liu, Hao
    An, Yaozu
    Xu, Zhuoran
    Yao, Zhuokun
    Zhang, Baofeng
    Xiong, Zhiwei
    Gui, Chenguang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 10888 - 10898
  • [39] Multi-task learning for gland segmentation
    Rezazadeh, Iman
    Duygulu, Pinar
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (01) : 1 - 9
  • [40] Multi-task learning with deformable convolution
    Li, Jie
    Huang, Lei
    Wei, Zhiqiang
    Zhang, Wenfeng
    Qin, Qibing
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 77