Multi-Task Consistency for Active Learning

被引:0
|
作者
Hekimoglu, Aral [1 ]
Friedrich, Philipp [2 ]
Zimmer, Walter [1 ]
Schmidt, Michael [2 ]
Marcos-Ramiro, Alvaro [2 ]
Knoll, Alois [1 ]
机构
[1] Techn Univ Munich, Munich, Germany
[2] BMW Grp, Munich, Germany
关键词
D O I
10.1109/ICCVW60793.2023.00366
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning-based solutions for vision tasks require a large amount of labeled training data to ensure their performance and reliability. In single-task vision-based settings, inconsistency-based active learning has proven to be effective in selecting informative samples for annotation. However, there is a lack of research exploiting the inconsistency between multiple tasks in multi-task networks. To address this gap, we propose a novel multi-task active learning strategy for two coupled vision tasks: object detection and semantic segmentation. Our approach leverages the inconsistency between them to identify informative samples across both tasks. We propose three constraints that specify how the tasks are coupled and introduce a method for determining the pixels belonging to the object detected by a bounding box, to later quantify the constraints as inconsistency scores. To evaluate the effectiveness of our approach, we establish multiple baselines for multi-task active learning and introduce a new metric, mean Detection Segmentation Quality (mDSQ), tailored for the multi-task active learning comparison that addresses the performance of both tasks. We conduct extensive experiments on the nuImages and A9 datasets, demonstrating that our approach out-performs existing state-of-the-art methods by up to 3.4% mDSQ on nuImages. Our approach achieves 95% of the fully-trained performance using only 67% of the available data, corresponding to 20% fewer labels compared to random selection and 5% fewer labels compared to state-of-the-art selection strategy. The code is available at https: //github.com/aralhekimoglu/BoxMask.
引用
收藏
页码:3407 / 3416
页数:10
相关论文
共 50 条
  • [11] Multi-Task Active Learning for Simultaneous Emotion Classification and Regression
    Jiang, Xue
    Meng, Lubin
    Wu, Dongrui
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 1947 - 1952
  • [12] Learning to Branch for Multi-Task Learning
    Guo, Pengsheng
    Lee, Chen-Yu
    Ulbricht, Daniel
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [13] Learning to Branch for Multi-Task Learning
    Guo, Pengsheng
    Lee, Chen-Yu
    Ulbricht, Daniel
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [14] Boosted multi-task learning
    Olivier Chapelle
    Pannagadatta Shivaswamy
    Srinivas Vadrevu
    Kilian Weinberger
    Ya Zhang
    Belle Tseng
    Machine Learning, 2011, 85 : 149 - 173
  • [15] An overview of multi-task learning
    Zhang, Yu
    Yang, Qiang
    NATIONAL SCIENCE REVIEW, 2018, 5 (01) : 30 - 43
  • [16] On Partial Multi-Task Learning
    He, Yi
    Wu, Baijun
    Wu, Di
    Wu, Xindong
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1174 - 1181
  • [17] Federated Multi-Task Learning
    Smith, Virginia
    Chiang, Chao-Kai
    Sanjabi, Maziar
    Talwalkar, Ameet
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [18] Pareto Multi-Task Learning
    Lin, Xi
    Zhen, Hui-Ling
    Li, Zhenhua
    Zhang, Qingfu
    Kwong, Sam
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [19] Asynchronous Multi-Task Learning
    Baytas, Inci M.
    Yan, Ming
    Jain, Anil K.
    Zhou, Jiayu
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 11 - 20
  • [20] Calibrated Multi-Task Learning
    Nie, Feiping
    Hu, Zhanxuan
    Li, Xuelong
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 2012 - 2021