A novel fault diagnosis framework of rolling bearings based on adaptive dynamic activation convolutional capsule network

被引:1
|
作者
Jiang, Guang-Jun [1 ,2 ]
Li, De-Zhi [1 ,2 ]
Li, Yun-Feng [1 ,2 ]
Zhao, Qi [1 ,2 ]
Luan, Yu [1 ,2 ]
Duan, Zheng-Wei [1 ,2 ]
机构
[1] Inner Mongolia Univ Technol, Sch Mech Engn, Hohhot, Inner Mongolia, Peoples R China
[2] Inner Mongolia Key Lab Adv Mfg Technol, Hohhot 010051, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金;
关键词
capsule network; dynamic activation function; rolling bearing; fault diagnosis; NEURAL-NETWORK;
D O I
10.1088/1361-6501/ad1f2a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a fault diagnosis framework of rolling bearings based on the adaptive dynamic activation convolutional capsule network (CN). The CN is first used to vectorize and mine the spatial information of features aiming at extracting more comprehensive spatial location features. Then, the feature extraction layer of the CN is improved to extract deeper features and reduce the number of parameters. The dynamic activation function is then introduced to extract features better than the steady-state activation function, which can self-adapt the activation features and capture variable feature information. Finally, real rolling bearing data sets are used to verify the superiority and effectiveness of the proposed method with the assistance of comparisons with existing fault diagnosis methods. The results confirmed that the proposed framework has better performance in terms of accuracy and generalization.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset
    Tang, Hongtao
    Gao, Shengbo
    Wang, Lei
    Li, Xixing
    Li, Bing
    Pang, Shibao
    SENSORS, 2021, 21 (20)
  • [22] Adaptive Composite Fault Diagnosis of Rolling Bearings Based on the CLNGO Algorithm
    Yu, Sen
    Ma, Jie
    PROCESSES, 2022, 10 (12)
  • [23] Adaptive fault diagnosis of rolling bearings based on EEMD and demodulated resonance
    Zhou, Z., 2013, Chinese Vibration Engineering Society (32):
  • [24] Fault Diagnosis of Rolling Element Bearings Based on Adaptive Mode Extraction
    Liu, Chuliang
    Tan, Jianping
    Huang, Zhonghe
    MACHINES, 2022, 10 (04)
  • [25] A novel rolling bearing fault diagnosis method based on Adaptive Denoising Convolutional Neural Network under noise background
    Wang, Qiang
    Xu, Feiyun
    MEASUREMENT, 2023, 218
  • [26] Multiscale holospectrum convolutional neural network-based fault diagnosis of rolling bearings with variable operating conditions
    Zhang, Xining
    Liu, Shuyu
    Li, Lin
    Lei, Jiangeng
    Chang, Ge
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (10)
  • [27] Fault diagnosis of rolling bearings with recurrent neural network based autoencoders
    Liu, Han
    Zhou, Jianzhong
    Zheng, Yang
    Jiang, Wei
    Zhang, Yuncheng
    ISA TRANSACTIONS, 2018, 77 : 167 - 178
  • [28] Fault diagnosis of rolling bearings with limited samples based on siamese network
    Xu Z.
    Li X.
    Zhang C.
    Hou H.
    Zhang W.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2022, 43 (10): : 241 - 251
  • [29] A Multiscale Graph Convolutional Neural Network Framework for Fault Diagnosis of Rolling Bearing
    Yin, Peizhe
    Nie, Jie
    Liang, Xinyue
    Yu, Shusong
    Wang, Chenglong
    Nie, Weizhi
    Ding, Xiangqian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [30] Novel imbalanced subdomain adaption multiscale convolutional network for cross-domain unsupervised fault diagnosis of rolling bearings
    Huo, Tianlong
    Deng, Linfeng
    Zhang, Bo
    Gong, Jun
    Hu, Baoquan
    Zhao, Rongzhen
    Liu, Zheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (01)