A novel rolling bearing fault diagnosis method based on Adaptive Denoising Convolutional Neural Network under noise background

被引:11
|
作者
Wang, Qiang [1 ]
Xu, Feiyun [1 ,2 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing, Peoples R China
[2] Southeast Univ, 2 Southeast Univ Rd, Nanjing 211189, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Rolling bearing fault diagnosis; Adaptive denoising; Convolutional Neural Network (CNN); Maximum Overlap Discrete Wavelet Packet; Transform (MODWPT); EMPIRICAL MODE DECOMPOSITION; TRANSFORM;
D O I
10.1016/j.measurement.2023.113209
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, significant progress has been made in intelligent fault diagnosis algorithms for rolling bearings. However, their real industrial application performance is hindered by challenges related to noise and variable load conditions. To solve this problem, we proposed an adaptive denoising convolutional neural network (ADCNN) which integrates adaptive denoising units to remove noise while preserving sensitive fault features, eliminating the need for manual denoising function settings. In addition, we use Maximum Overlap Discrete Wavelet Packet Transform to separate out the interfering components of noisy signal. To further improve ADCNN's noise immunity, we adopt a strategy of gradually decreasing the number of channels and using large convolutional kernels. ADCNN was evaluated alongside the latest methods on two different datasets, and the results demonstrate that ADCNN outperforms other methods both accuracy and robustness. Therefore, our approach presents a promising solution for diagnosing mechanical systems in noisy environments.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Intelligent fault diagnosis method of rolling bearing based on stacked denoising autoencoder and convolutional neural network
    Che Changchang
    Wang Huawei
    Ni Xiaomei
    Fu Qiang
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2020, 72 (07) : 947 - 953
  • [2] A Fault Diagnosis Method of Rolling Bearing Based on Convolutional Neural Network
    Zhang, Bangcheng
    Gao, Shuo
    Hu, Guanyu
    Gao, Zhi
    Zhao, Yadong
    Du, Jianzhuang
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4709 - 4713
  • [3] Rolling Bearing Composite Fault Diagnosis Method Based on Convolutional Neural Network
    Chen, Song
    Guo, Dong-ting
    Chen, Li-ai
    Wang, Da-gui
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (03)
  • [4] An adaptive deep convolutional neural network for rolling bearing fault diagnosis
    Wang Fuan
    Jiang Hongkai
    Shao Haidong
    Duan Wenjing
    Wu Shuaipeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (09)
  • [5] Rolling Bearing Fault Diagnosis Method Based on Multilayer Noise Reduction Technology and Improved Convolutional Neural Network
    Dong S.
    Pei X.
    Wu W.
    Tang B.
    Zhao X.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (01): : 148 - 156
  • [6] A fault diagnosis method based on improved parallel convolutional neural network for rolling bearing
    Xu, Tao
    Lv, Huan
    Lin, Shoujin
    Tan, Haihui
    Zhang, Qing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2023, 237 (12) : 2759 - 2771
  • [7] Rolling bearing fault convolutional neural network diagnosis method based on casing signal
    Xiangyang Zhang
    Guo Chen
    Tengfei Hao
    Zhiyuan He
    Journal of Mechanical Science and Technology, 2020, 34 : 2307 - 2316
  • [8] Rolling bearing fault convolutional neural network diagnosis method based on casing signal
    Zhang, Xiangyang
    Chen, Guo
    Hao, Tengfei
    He, Zhiyuan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (06) : 2307 - 2316
  • [9] Convolutional neural network diagnosis method of rolling bearing fault based on casing signal
    Zhang X.
    Chen G.
    Hao T.
    He Z.
    Li X.
    Cheng Z.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2019, 34 (12): : 2729 - 2737
  • [10] A rolling bearing fault diagnosis method based on a convolutional neural network with frequency attention mechanism
    Zhou, Hui
    Liu, Runda
    Li, Yaxin
    Wang, Jiacheng
    Xie, Suchao
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (04): : 2475 - 2495