A SIMPLE INTRODUCTION TO HIGHER ORDER LIFTINGS FOR BINARY PROBLEMS

被引:0
|
作者
Jarre, Florian [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Math Inst, D-40225 Dusseldorf, Germany
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2023年 / 19卷 / 03期
关键词
binary problems; higher order liftings; MAX-CUT; RELAXATIONS; OPTIMIZATION; MATRICES;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A short, simple, and self-contained proof is presented showing that n-th lifting for the max-cut-polytope is exact. The proof re-derives the known observations that the max-cut-polytope is the projection of a higher-dimensional regular simplex and that this simplex coincides with the n-th semidefinite lifting. An extension to reduce the dimension of higher order liftings and to include linear equality and inequality constraints concludes this paper
引用
收藏
页码:411 / 421
页数:11
相关论文
共 50 条
  • [31] HIGHER-ORDER ABSTRACT CAUCHY PROBLEMS
    SANDEFUR, JT
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 60 (03) : 728 - 742
  • [32] Superlinear higher order boundary value problems
    Agarwal R.P.
    O'Regan D.
    aequationes mathematicae, 1999, 57 (2) : 233 - 240
  • [33] Invariant Higher-Order Variational Problems
    François Gay-Balmaz
    Darryl D. Holm
    David M. Meier
    Tudor S. Ratiu
    François-Xavier Vialard
    Communications in Mathematical Physics, 2012, 309 : 413 - 458
  • [34] Higher order asymptotic homogenization for dynamical problems
    Andrianov, Igor I.
    Andrianov, Igor, V
    Starushenko, Galina A.
    Borodin, Evgenij, I
    MATHEMATICS AND MECHANICS OF SOLIDS, 2022, 27 (09) : 1672 - 1687
  • [35] AMBIGUITIES AND PROBLEMS IN HIGHER-ORDER CORRECTIONS
    MEBARKI, N
    ABBES, O
    BENRACHI, F
    ACTA PHYSICA POLONICA B, 1990, 21 (12): : 947 - 968
  • [36] Invariant Higher-Order Variational Problems
    Gay-Balmaz, Francois
    Holm, Darryl D.
    Meier, David M.
    Ratiu, Tudor S.
    Vialard, Francois-Xavier
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (02) : 413 - 458
  • [37] Error estimates for obstacle problems of higher order
    Bildhauer M.
    Fuchs M.
    Journal of Mathematical Sciences, 2008, 152 (5) : 617 - 624
  • [38] A structured set of higher-order problems
    Benzmüller, CE
    Brown, CE
    THEOREM PROVING IN HIGHER ORDER LOGICS, PROCEEDINGS, 2005, 3603 : 66 - 81
  • [39] HIGHER-ORDER INVERSE EIGENVALUE PROBLEMS
    MCLAUGHLIN, JR
    LECTURE NOTES IN MATHEMATICS, 1982, 964 : 503 - 518
  • [40] THE EIGENVALUE PROBLEMS OF ELLIPTIC EQUATIONS OF HIGHER ORDER
    顾永耕
    ActaMathematicaScientia, 1991, (04) : 361 - 367