A structured set of higher-order problems

被引:0
|
作者
Benzmüller, CE [1 ]
Brown, CE [1 ]
机构
[1] Univ Saarland, Fachbereich Informat, D-6600 Saarbrucken, Germany
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a set of problems that may support the development of calculi and theorem provers for classical higher-order logic. We propose to employ these test problems as quick and easy criteria preceding the formal soundness and completeness analysis of proof systems under development. Our set of problems is structured according to different technical issues and along different notions of semantics (including Henkin semantics) for higher-order logic. Many examples are either theorems or non-theorems depending on the choice of semantics. The examples can thus indicate the deductive strength of a proof system.
引用
收藏
页码:66 / 81
页数:16
相关论文
共 50 条
  • [1] HIGHER-ORDER SET THEORIES
    MAREK, W
    ZBIERSKI, P
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1973, 21 (02): : 97 - 101
  • [2] HIGHER-ORDER MIXED DUALITY FOR SET-VALUED OPTIMIZATION PROBLEMS
    Hu, Yao-Wen
    Wang, Yu
    Li, Xiao-Bing
    Yao, Bin
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (02): : 265 - 277
  • [3] Higher-order positive set constraints
    Goubault-Larrecq, J
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2002, 2471 : 473 - 489
  • [4] HIGHER-ORDER ABSTRACT CAUCHY PROBLEMS
    SANDEFUR, JT
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 60 (03) : 728 - 742
  • [5] AMBIGUITIES AND PROBLEMS IN HIGHER-ORDER CORRECTIONS
    MEBARKI, N
    ABBES, O
    BENRACHI, F
    ACTA PHYSICA POLONICA B, 1990, 21 (12): : 947 - 968
  • [6] Invariant Higher-Order Variational Problems
    François Gay-Balmaz
    Darryl D. Holm
    David M. Meier
    Tudor S. Ratiu
    François-Xavier Vialard
    Communications in Mathematical Physics, 2012, 309 : 413 - 458
  • [7] Invariant Higher-Order Variational Problems
    Gay-Balmaz, Francois
    Holm, Darryl D.
    Meier, David M.
    Ratiu, Tudor S.
    Vialard, Francois-Xavier
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (02) : 413 - 458
  • [8] HIGHER-ORDER INVERSE EIGENVALUE PROBLEMS
    MCLAUGHLIN, JR
    LECTURE NOTES IN MATHEMATICS, 1982, 964 : 503 - 518
  • [9] Higher-order symmetric duality in multiobjective programming problems under higher-order invexity
    Padhan, S. K.
    Nahak, C.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) : 1705 - 1712
  • [10] INABILITY OF HIGHER-ORDER OUTER PRODUCT LEARNING TO MAP RANDOM HIGHER-ORDER PROBLEMS
    KINSER, JM
    NEUROCOMPUTING, 1995, 8 (03) : 349 - 357