Bayesian Inference for Multivariate Spatial Models with INLA

被引:0
|
作者
Palmi-Perales, Francisco [1 ]
Gomez-Rubio, Virgilio [2 ]
Bivand, Roger S. [3 ]
Cameletti, Michela [4 ]
Rue, Havard [5 ]
机构
[1] Univ Valencia, Fac Math, Dept Stat & Operat Res, C Dr Moliner 50, Burjassot 46100, Spain
[2] Univ Castilla La Mancha, Dept Math, ETS Ingn Ind Albacete, La Mancha Ave Espana,S-n, Albacete 02071, Spain
[3] Norwegian Sch Econ, Dept Econ, Helleveien 30, N-5045 Bergen, Norway
[4] Univ Bergamo, Dept Econ, Via Caniana 2, IT-24127 Bergamo, Italy
[5] King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
来源
R JOURNAL | 2023年 / 15卷 / 03期
关键词
POINT PATTERNS; GSTAT;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Bayesian methods and software for spatial data analysis are well-established now in the broader scientific community generally and in the spatial data analysis community specifically. Despite the wide application of spatial models, the analysis of multivariate spatial data using the integrated nested Laplace approximation through its R package (R-INLA) has not been widely described in the existing literature. Therefore, the main objective of this article is to demonstrate that R-INLA is a convenient toolbox to analyse different types of multivariate spatial datasets. This will be illustrated by analysing three datasets which are publicly available. Furthermore, the details and the R code of these analyses are provided to exemplify how to fit models to multivariate spatial datasets with R-INLA.
引用
收藏
页码:172 / 190
页数:19
相关论文
共 50 条
  • [1] Bayesian Multivariate Spatial Models for Lattice Data with INLA
    Palmi-Perales, Francisco
    Gomez-Rubio, Virgilio
    Martinez-Beneito, Miguel A.
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 98 (02): : 1 - 29
  • [2] A new avenue for Bayesian inference with INLA
    Van Niekerk, Janet
    Krainski, Elias
    Rustand, Denis
    Rue, Havard
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 181
  • [3] Improving the INLA approach for approximate Bayesian inference for latent Gaussian models
    Ferkingstad, Egil
    Rue, Havard
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 2706 - 2731
  • [4] An efficient PG-INLA algorithm for the Bayesian inference of logistic item response models
    Lin, Xiaofan
    Tang, Yincai
    STATISTICAL THEORY AND RELATED FIELDS, 2025, 9 (01) : 84 - 100
  • [5] Bayesian inference in multivariate spatio-temporal areal models using INLA: analysis of gender-based violence in small areas
    Vicente, G.
    Goicoa, T.
    Ugarte, M. D.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2020, 34 (10) : 1421 - 1440
  • [6] Bayesian inference in multivariate spatio-temporal areal models using INLA: analysis of gender-based violence in small areas
    G. Vicente
    T. Goicoa
    M. D. Ugarte
    Stochastic Environmental Research and Risk Assessment, 2020, 34 : 1421 - 1440
  • [7] INLA plus : approximate Bayesian inference for non-sparse models using HPC
    Abdul Fattah, Esmail
    Van Niekerk, Janet
    Rue, Havard
    STATISTICS AND COMPUTING, 2025, 35 (01)
  • [8] Bayesian inference of multivariate-GARCH-BEKK models
    Livingston, G. C. Jr Jr
    Nur, Darfiana
    STATISTICAL PAPERS, 2023, 64 (05) : 1749 - 1774
  • [9] Classical and Bayesian inference robustness in multivariate regression models
    Fernandez, C
    Osiewalski, J
    Steel, MFJ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) : 1434 - 1444
  • [10] Bayesian inference of multivariate-GARCH-BEKK models
    G. C. Livingston
    Darfiana Nur
    Statistical Papers, 2023, 64 : 1749 - 1774