Classical and Bayesian inference robustness in multivariate regression models

被引:7
|
作者
Fernandez, C [1 ]
Osiewalski, J
Steel, MFJ
机构
[1] Tilburg Univ, Dept Econometr, NL-5000 LE Tilburg, Netherlands
[2] Catholic Univ Louvain, Inst Stat, B-1348 Louvain, Belgium
[3] Acad Econ, Dept Econometr, PL-31510 Krakow, Poland
[4] Catholic Univ Louvain, CORE, B-1348 Louvain, Belgium
关键词
distribution invariance; independent sampling; likelihood ratio principle; pivotal quantity; posterior inference; scale invariance;
D O I
10.2307/2965413
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a one-to-one correspondence between points z is an element of R(n) - {0} and pairs (y, r), where r > 0 and y lies in some space y, through z = ry. As an immediate consequence, we can represent random variables Z that take values in R(n) - {0} as Z = RY, where R is a positive random variable and Y takes values in y. By fixing the distribution of either R or Y while imposing independence between them, we generate classes of distributions on R(n). Many families of multivariate distributions (e.g., spherical, elliptical, l(q) spherical, upsilon spherical, and anisotropic) can be interpreted in this unifying framework. Some classical inference procedures can be shown to be completely robust in these classes of multivariate distributions. We use these findings in the practically relevant context of regression models. Finally, we present a robust Bayesian analysis and indicate the links between classical and Bayesian results. In particular, for the regression model with lid errors up to a scale, we provide a formal characterization for both classical and Bayesian robustness results concerning inference on the regression parameters.
引用
收藏
页码:1434 / 1444
页数:11
相关论文
共 50 条
  • [1] Bayesian Inference of a Multivariate Regression Model
    Sinay, Marick S.
    Hsu, John S. J.
    JOURNAL OF PROBABILITY AND STATISTICS, 2014, 2014
  • [2] Semiparametric Bayesian inference for regression models
    Seifu, Y
    Severini, TA
    Tanner, MA
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (04): : 719 - 734
  • [3] Bayesian Inference of Multivariate Regression Models with Endogenous Markov Regime-Switching Parameters*
    Kim, Young Min
    Kang, Kyu Ho
    JOURNAL OF FINANCIAL ECONOMETRICS, 2022, 20 (03) : 391 - 436
  • [4] Bayesian Inference for Multivariate Spatial Models with INLA
    Palmi-Perales, Francisco
    Gomez-Rubio, Virgilio
    Bivand, Roger S.
    Cameletti, Michela
    Rue, Havard
    R JOURNAL, 2023, 15 (03): : 172 - 190
  • [5] Inference in multivariate regression models with measurement errors
    Sandoval-Moreno, Gabriela
    Galea, Manuel
    Arellano-Valle, Reinaldo
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (12) : 1997 - 2025
  • [6] Bayesian Multimodel Inference for Geostatistical Regression Models
    Johnson, Devin S.
    Hoeting, Jennifer A.
    PLOS ONE, 2011, 6 (11):
  • [7] Assessing Robustness of Inference in Symmetrical Nonlinear Regression Models
    Hernando Vanegas, Luis
    Marina Rondon, Luz
    Cysneiros, Francisco Jose A.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (09) : 1692 - 1711
  • [8] Bayesian inference of multivariate-GARCH-BEKK models
    Livingston, G. C. Jr Jr
    Nur, Darfiana
    STATISTICAL PAPERS, 2023, 64 (05) : 1749 - 1774
  • [9] Bayesian inference of multivariate-GARCH-BEKK models
    G. C. Livingston
    Darfiana Nur
    Statistical Papers, 2023, 64 : 1749 - 1774
  • [10] Inference for elliptical copula multivariate response regression models
    Zhao, Yue
    Genest, Christian
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01): : 911 - 984