Bayesian Inference for Multivariate Spatial Models with INLA

被引:0
|
作者
Palmi-Perales, Francisco [1 ]
Gomez-Rubio, Virgilio [2 ]
Bivand, Roger S. [3 ]
Cameletti, Michela [4 ]
Rue, Havard [5 ]
机构
[1] Univ Valencia, Fac Math, Dept Stat & Operat Res, C Dr Moliner 50, Burjassot 46100, Spain
[2] Univ Castilla La Mancha, Dept Math, ETS Ingn Ind Albacete, La Mancha Ave Espana,S-n, Albacete 02071, Spain
[3] Norwegian Sch Econ, Dept Econ, Helleveien 30, N-5045 Bergen, Norway
[4] Univ Bergamo, Dept Econ, Via Caniana 2, IT-24127 Bergamo, Italy
[5] King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
来源
R JOURNAL | 2023年 / 15卷 / 03期
关键词
POINT PATTERNS; GSTAT;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Bayesian methods and software for spatial data analysis are well-established now in the broader scientific community generally and in the spatial data analysis community specifically. Despite the wide application of spatial models, the analysis of multivariate spatial data using the integrated nested Laplace approximation through its R package (R-INLA) has not been widely described in the existing literature. Therefore, the main objective of this article is to demonstrate that R-INLA is a convenient toolbox to analyse different types of multivariate spatial datasets. This will be illustrated by analysing three datasets which are publicly available. Furthermore, the details and the R code of these analyses are provided to exemplify how to fit models to multivariate spatial datasets with R-INLA.
引用
收藏
页码:172 / 190
页数:19
相关论文
共 50 条
  • [31] Efficient Bayesian Inference for Multivariate Probit Models With Sparse Inverse Correlation Matrices
    Talhouk, Aline
    Doucet, Arnaud
    Murphy, Kevin
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (03) : 739 - 757
  • [32] Bayesian Inference for General Gaussian Graphical Models With Application to Multivariate Lattice Data
    Dobra, Adrian
    Lenkoski, Alex
    Rodriguez, Abel
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) : 1418 - 1433
  • [33] Comparing MCMC and INLA for disease mapping with Bayesian hierarchical models
    Tom De Smedt
    Koen Simons
    An Van Nieuwenhuyse
    Geert Molenberghs
    Archives of Public Health, 73 (Suppl 1)
  • [34] Bayesian Estimation and Prediction of Stochastic Volatility Models via INLA
    Ehlers, Ricardo
    Zevallos, M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (03) : 683 - 693
  • [35] Multivariate posterior inference for spatial models with the integrated nested Laplace approximation
    Gomez-Rubio, Virgilio
    Palmi-Perales, Francisco
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2019, 68 (01) : 199 - 215
  • [36] A Bayesian multivariate spatial approach for illness-death survival models
    Llopis-Cardona, Fran
    Armero, Carmen
    Sanfelix-Gimeno, Gabriel
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2023, 32 (09) : 1633 - 1648
  • [37] Joint posterior inference for latent Gaussian models with R-INLA
    Chiuchiolo, Cristian
    van Niekerk, Janet
    Rue, Havard
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (05) : 723 - 752
  • [38] INFERENCE IN THE MULTIVARIATE EXPONENTIAL MODELS
    Hanagal, David D.
    JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2009, 2 (02): : 1 - 10
  • [39] Multivariate zero-inflated INGARCH models: Bayesian inference and composite likelihood approach
    Piancastelli, Luiza S. C.
    Silva, Rodrigo B.
    STATISTICS AND COMPUTING, 2025, 35 (01)
  • [40] Adapting multivariate Brownian diffusion models to Bayesian inference of human population history and phylogeny
    Vetr, Nikolai G.
    May, Michael R.
    Moore, Brian R.
    Weaver, Timothy D.
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2018, 165 : 287 - 288