Interpretable Machine Learning Using Partial Linear Models

被引:0
|
作者
Flachaire, Emmanuel [1 ,2 ]
Hue, Sullivan [1 ,2 ]
Laurent, Sebastien [1 ,2 ,3 ,4 ]
Hacheme, Gilles [1 ,2 ]
机构
[1] Aix Marseille Univ, Aix Marseille Sch Econ, Marseille, France
[2] EHESS, CNRS, Paris, France
[3] Aix Marseille Univ, AMSE, Marseille, France
[4] CNRS, Marseille, France
关键词
ART CLASSIFICATION ALGORITHMS; NEURAL-NETWORKS; TIME-SERIES; REGRESSION; TESTS;
D O I
10.1111/obes.12592
中图分类号
F [经济];
学科分类号
02 ;
摘要
Despite their high predictive performance, random forest and gradient boosting are often considered as black boxes which has raised concerns from practitioners and regulators. As an alternative, we suggest using partial linear models that are inherently interpretable. Specifically, we propose to combine parametric and non-parametric functions to accurately capture linearities and non-linearities prevailing between dependent and explanatory variables, and a variable selection procedure to control for overfitting issues. Estimation relies on a two-step procedure building upon the double residual method. We illustrate the predictive performance and interpretability of our approach on a regression problem.
引用
收藏
页码:519 / 540
页数:22
相关论文
共 50 条
  • [41] Materials Discovery through Machine Learning: Experimental Validation and Interpretable Models
    Mar, Arthur
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2023, 79 : A32 - A32
  • [42] Estimating the water quality index based on interpretable machine learning models
    Yang, Shiwei
    Liang, Ruifeng
    Chen, Junguang
    Wang, Yuanming
    Li, Kefeng
    [J]. WATER SCIENCE AND TECHNOLOGY, 2024, 89 (05) : 1340 - 1356
  • [43] Algorithms for Interpretable Machine Learning
    Rudin, Cynthia
    [J]. PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 1519 - 1519
  • [44] Interpretable machine learning for genomics
    Watson, David S.
    [J]. HUMAN GENETICS, 2022, 141 (09) : 1499 - 1513
  • [45] Techniques for Interpretable Machine Learning
    Du, Mengnan
    Li, Ninghao
    Hu, Xia
    [J]. COMMUNICATIONS OF THE ACM, 2020, 63 (01) : 68 - 77
  • [46] Interpretable machine learning for genomics
    David S. Watson
    [J]. Human Genetics, 2022, 141 : 1499 - 1513
  • [47] Interpretable Machine Learning for TabPFN
    Rundel, David
    Kobialka, Julius
    von Crailsheim, Constantin
    Feurer, Matthias
    Nagler, Thomas
    Ruegamer, David
    [J]. EXPLAINABLE ARTIFICIAL INTELLIGENCE, PT II, XAI 2024, 2024, 2154 : 465 - 476
  • [48] Interpretable Machine Learning in Healthcare
    Ahmad, Muhammad Aurangzeb
    Eckert, Carly
    Teredesai, Ankur
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2018, : 447 - 447
  • [49] Interpretable Machine Learning in Healthcare
    Ahmad, Muhammad Aurangzeb
    Eckert, Carly
    Teredesai, Ankur
    [J]. ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 559 - 560
  • [50] Interpretable machine learning models for classifying low back pain status using functional physiological variables
    Bernard X. W. Liew
    David Rugamer
    Alessandro Marco De Nunzio
    Deborah Falla
    [J]. European Spine Journal, 2020, 29 : 1845 - 1859