Materials Discovery through Machine Learning: Experimental Validation and Interpretable Models

被引:0
|
作者
Mar, Arthur [1 ]
机构
[1] Univ Alberta, Edmonton, AB, Canada
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
引用
收藏
页码:A32 / A32
页数:1
相关论文
共 50 条
  • [1] Toward Interpretable Machine Learning Models for Materials Discovery
    Mikulskis, Paulius
    Alexander, Morgan R.
    Winkler, David Alan
    [J]. ADVANCED INTELLIGENT SYSTEMS, 2019, 1 (08)
  • [2] Interpretable discovery of semiconductors with machine learning
    Hitarth Choubisa
    Petar Todorović
    Joao M. Pina
    Darshan H. Parmar
    Ziliang Li
    Oleksandr Voznyy
    Isaac Tamblyn
    Edward H. Sargent
    [J]. npj Computational Materials, 9
  • [3] Interpretable discovery of semiconductors with machine learning
    Choubisa, Hitarth
    Todorovic, Petar
    Pina, Joao M. M.
    Parmar, Darshan H.
    Li, Ziliang
    Voznyy, Oleksandr
    Tamblyn, Isaac
    Sargent, Edward H.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [4] Accelerating Antimicrobial Peptide Discovery for WHO Priority Pathogens through Predictive and Interpretable Machine Learning Models
    Tsai, Cheng-Ting
    Lin, Chia-Wei
    Ye, Gen-Lin
    Wu, Shao-Chi
    Yao, Philip
    Lin, Ching-Ting
    Wan, Lei
    Tsai, Hui-Hsu Gavin
    [J]. ACS OMEGA, 2024, 9 (08): : 9357 - 9374
  • [5] Discovery of novel materials through machine learning
    Akinpelu, Akinwumi
    Bhullar, Mangladeep
    Yao, Yansun
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (45)
  • [6] Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study
    Hu, Chang
    Li, Lu
    Huang, Weipeng
    Wu, Tong
    Xu, Qiancheng
    Liu, Juan
    Hu, Bo
    [J]. INFECTIOUS DISEASES AND THERAPY, 2022, 11 (03) : 1117 - 1132
  • [7] Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study
    Chang Hu
    Lu Li
    Weipeng Huang
    Tong Wu
    Qiancheng Xu
    Juan Liu
    Bo Hu
    [J]. Infectious Diseases and Therapy, 2022, 11 : 1117 - 1132
  • [8] Quantifying the performance of machine learning models in materials discovery
    Borg, Christopher K. H.
    Muckley, Eric S.
    Nyby, Clara
    Saal, James E.
    Ward, Logan
    Mehta, Apurva
    Meredig, Bryce
    [J]. DIGITAL DISCOVERY, 2023, 2 (02): : 327 - 338
  • [9] Interpretable machine learning for materials design
    James Dean
    Matthias Scheffler
    Thomas A. R. Purcell
    Sergey V. Barabash
    Rahul Bhowmik
    Timur Bazhirov
    [J]. Journal of Materials Research, 2023, 38 : 4477 - 4496
  • [10] Interpretable machine learning for materials design
    Dean, James
    Scheffler, Matthias
    Purcell, Thomas A. R.
    Barabash, Sergey V.
    Bhowmik, Rahul
    Bazhirov, Timur
    [J]. JOURNAL OF MATERIALS RESEARCH, 2023, 38 (20) : 4477 - 4496