Toward Interpretable Machine Learning Models for Materials Discovery

被引:24
|
作者
Mikulskis, Paulius [1 ]
Alexander, Morgan R. [1 ]
Winkler, David Alan [1 ,2 ,3 ,4 ]
机构
[1] Univ Nottingham, Sch Pharm, Nottingham NG7 2RD, England
[2] Monash Univ, Monash Inst Pharmaceut Sci, Parkville, Vic 3052, Australia
[3] La Trobe Univ, La Trobe Inst Mol Sci, Kingsbury Dr, Bundoora, Vic 3086, Australia
[4] CSIRO Mfg, Clayton, Vic 3168, Australia
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
interpretability; machine learning; materials designs; molecular descriptors; structure-property relationships;
D O I
10.1002/aisy.201900045
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning (ML) and artificial intelligence (AI) methods for modeling useful materials properties are now important technologies for rational design and optimization of bespoke functional materials. Although these methods make good predictions of the properties of new materials, current modeling methods use efficient but rather arcane (difficult-to-interpret) mathematical features (descriptors) to characterize materials. Data-driven ML models are considerably more useful if more chemically interpretable descriptors are used to train them, as long as these models also accurately recapitulate the properties of materials in training and test sets used to generate and validate the models. Herein, how a particular type of molecular fragment descriptor, the signature descriptor, achieves these joint aims of accuracy and interpretability is described. Seven different types of materials properties are modeled, and the performance of models generated from signature descriptors is compared with those generated by widely used Dragon descriptors. The key descriptors in the model represent functionalities that make chemical sense. Mapping these fragments back on to exemplar materials provides a useful guide to chemists wishing to modify promising lead materials to improve their properties. This is one of the first applications of signature descriptors to the modeling of complex materials properties.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Materials Discovery through Machine Learning: Experimental Validation and Interpretable Models
    Mar, Arthur
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2023, 79 : A32 - A32
  • [2] Interpretable Machine Learning for Catalytic Materials Design toward Sustainability
    Xin, Hongliang
    Mou, Tianyou
    Pillai, Hemanth Somarajan
    Wang, Shih-Han
    Huang, Yang
    [J]. ACCOUNTS OF MATERIALS RESEARCH, 2023, 5 (01): : 22 - 34
  • [4] Interpretable discovery of semiconductors with machine learning
    Hitarth Choubisa
    Petar Todorović
    Joao M. Pina
    Darshan H. Parmar
    Ziliang Li
    Oleksandr Voznyy
    Isaac Tamblyn
    Edward H. Sargent
    [J]. npj Computational Materials, 9
  • [5] Interpretable discovery of semiconductors with machine learning
    Choubisa, Hitarth
    Todorovic, Petar
    Pina, Joao M. M.
    Parmar, Darshan H.
    Li, Ziliang
    Voznyy, Oleksandr
    Tamblyn, Isaac
    Sargent, Edward H.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [6] Quantifying the performance of machine learning models in materials discovery
    Borg, Christopher K. H.
    Muckley, Eric S.
    Nyby, Clara
    Saal, James E.
    Ward, Logan
    Mehta, Apurva
    Meredig, Bryce
    [J]. DIGITAL DISCOVERY, 2023, 2 (02): : 327 - 338
  • [7] Interpretable machine learning for materials design
    Dean, James
    Scheffler, Matthias
    Purcell, Thomas A. R.
    Barabash, Sergey V.
    Bhowmik, Rahul
    Bazhirov, Timur
    [J]. JOURNAL OF MATERIALS RESEARCH, 2023, 38 (20) : 4477 - 4496
  • [8] Interpretable machine learning for materials design
    James Dean
    Matthias Scheffler
    Thomas A. R. Purcell
    Sergey V. Barabash
    Rahul Bhowmik
    Timur Bazhirov
    [J]. Journal of Materials Research, 2023, 38 : 4477 - 4496
  • [9] Interpretable Differencing of Machine Learning Models
    Haldar, Swagatam
    Saha, Diptikalyan
    Wei, Dennis
    Nair, Rahul
    Daly, Elizabeth M.
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 788 - 797
  • [10] Toward Efficient Automation of Interpretable Machine Learning
    Kovalerchuk, Boris
    Neuhaus, Nathan
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 4940 - 4947