On a nonlinear transmission eigenvalue problem with a Neumann-Robin boundary condition

被引:0
|
作者
Barbu, Luminita [1 ]
Burlacu, Andreea [1 ]
Morosanu, Gheorghe [2 ,3 ]
机构
[1] Ovidius Univ, Fac Math & Informat, 124 Mamaia Blvd, Constanta 900527, Romania
[2] Acad Romanian Scientists, Bucharest, Romania
[3] Babes Bolyai Univ, Fac Math & Comp Sci, Cluj napoca, Romania
关键词
Krasnosel'skii genus; Lusternik-Schnirelmann theory; nonlinear eigenvalue problem; variational methods for elliptic systems; C(1)manifold; p-Laplacian;
D O I
10.1002/mma.9563
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a bounded domain in R-N, N >= 2, with smooth boundary Sigma and let Omega(1) be a subdomain of Omega with smooth boundary Gamma,such that (Omega) over bar (1) subset of Omega. Denote Omega(2)=Omega\(Omega) over bar (1).Consider the transmission eigenvalue problem {-Delta(p)u(1)+ gamma(1)(x)vertical bar u(1)vertical bar(r-2)u(1)=lambda vertical bar u(1)vertical bar(p-2)u(1) in Omega(1), -Delta(q)u(2)+ gamma(2)(x)vertical bar u(2)vertical bar(r-2)u(1)=lambda vertical bar u(2)vertical bar(p-2)u(2)in Omega(2), u(1)=u(2), partial derivative u(1)/partial derivative v(p)= partial derivative u(2)/partial derivative v(q) on Gamma, partial derivative u(2)/partial derivative v(q)+beta(x)vertical bar u(2)vertical bar(zeta-2)u(2)=0 on Sigma, where lambda is a real parameter, p, q, r, s, zeta is an element of(1,infinity), and gamma(i) is an element of L-infinity(Omega(i)), i = 1,2, beta is an element of L-infinity(Sigma), beta >= 0 a. e. on Sigma.Under additional suitable assumptions on p, q, r, s, zeta, we prove the existence of a sequence of eigenvalues(lambda(n))(n), lambda(n) -> infinity.The proof is based on Lusternik-Schnirelmann theory on C-1-manifolds.
引用
收藏
页码:18375 / 18386
页数:12
相关论文
共 50 条
  • [1] A nonlinear elliptic eigenvalue–transmission problem with Neumann boundary condition
    Luminiţa Barbu
    Gheorghe Moroşanu
    Cornel Pintea
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 821 - 836
  • [2] A nonlinear elliptic eigenvalue-transmission problem with Neumann boundary condition
    Barbu, Luminita
    Morosanu, Gheorghe
    Pintea, Cornel
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (03) : 821 - 836
  • [3] On a mixed Neumann-Robin boundary value problem in electrical impedance tomography
    Ciulli, S
    Ispas, S
    Pidcock, MK
    Stroian, A
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 (10): : 681 - 696
  • [4] Positive solutions for a class of nonlinear boundary value problems with Neumann-Robin boundary conditions
    Anuradha, V
    Maya, C
    Shivaji, R
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 236 (01) : 94 - 124
  • [5] A NONLINEAR EIGENVALUE PROBLEM WITH p(x)-GROWTH AND GENERALIZED ROBIN BOUNDARY VALUE CONDITION
    Radulescu, Vicentiu D.
    Saiedinezhad, Somayeh
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (01) : 39 - 52
  • [6] On the Mixed Neumann-Robin Problem for the Elasticity System in Exterior Domains
    Matevossian, H. A.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2020, 27 (02) : 272 - 276
  • [7] Eigenvalue problem in two dimensions for an irregular boundary: Neumann condition
    S. Panda
    S. Chakraborty
    S. P. Khastgir
    [J]. The European Physical Journal Plus, 126
  • [8] Eigenvalue problem in two dimensions for an irregular boundary: Neumann condition
    Panda, S.
    Chakraborty, S.
    Khastgir, S. P.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (07): : 1 - 20
  • [9] On the relation between interior critical points and parameters for a class of nonlinear problems with Neumann-Robin boundary conditions
    Afrouzi, G. A.
    Moghaddam, M. Khaleghy
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 29 (05) : 1109 - 1114
  • [10] Inverse transmission eigenvalue problems for the Schrodinger operator with the Robin boundary condition
    Ma, Li-Jie
    Xu, Xiao-Chuan
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (01)