A NONLINEAR EIGENVALUE PROBLEM WITH p(x)-GROWTH AND GENERALIZED ROBIN BOUNDARY VALUE CONDITION

被引:6
|
作者
Radulescu, Vicentiu D. [1 ,2 ]
Saiedinezhad, Somayeh [3 ]
机构
[1] Romanian Acad, Inst Math Simion Stoilow, POB 1-764, Bucharest 014700, Romania
[2] Univ Craiova, Dept Math, St AI Cuza 13, Craiova 200585, Romania
[3] Iran Univ Sci & Technol, Sch Math, Tehran, Iran
关键词
Nonlinear eigenvalue problem; Lusternik-Schnirelmann principle; variable exponent Sobolev space; p(x)-Laplacian operator; EXISTENCE; EQUATIONS; SPACES;
D O I
10.3934/cpaa.2018003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the study of the following nonlinear eigenvalue problem with Robin boundary condition {-div (a(x, del u)) = lambda b(x, u) in Omega partial derivative A/partial derivative n + beta(x)c(x, u) = 0 on partial derivative Omega. The abstract setting involves Sobolev spaces with variable exponent. The main result of the present paper establishes a sufficient condition for the existence of an unbounded sequence of eigenvalues. Our arguments strongly rely on the Lusternik-Schnirelmann principle. Finally, we focus to the following particular case, which is a p(x)-Laplacian problem with several variable exponents: {-div (a(0)(x)vertical bar del u vertical bar(p(x)-2)del u) = lambda b(0)(x)vertical bar u vertical bar(q(x)-2)u in Omega vertical bar del u vertical bar(P(x)-2)partial derivative U/partial derivative n + beta(x)vertical bar u vertical bar(r(x)-2)u = 0 on partial derivative Omega. Combining variational arguments, we establish several properties of the eigenvalues family of this nonhomogeneous Robin problem.
引用
收藏
页码:39 / 52
页数:14
相关论文
共 50 条
  • [1] The Eigenvalue Problem for p(x)-Laplacian Equations Involving Robin Boundary Condition
    Lujuan YU
    Fengquan LI
    Fei XU
    [J]. Journal of Mathematical Research with Applications, 2018, 38 (01) : 63 - 76
  • [2] On a nonlinear transmission eigenvalue problem with a Neumann-Robin boundary condition
    Barbu, Luminita
    Burlacu, Andreea
    Morosanu, Gheorghe
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (17) : 18375 - 18386
  • [3] On the p(x)-Laplacian Robin eigenvalue problem
    Deng, Shao-Gao
    Wang, Qin
    Cheng, Shijuan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5643 - 5649
  • [4] The Robin eigenvalue problem for the p(x)-Laplacian as p → ∞
    Abdullayev, Farhod
    Bocea, Marian
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 91 : 32 - 45
  • [5] The uniqueness theorem for boundary value problem with aftereffect and eigenvalue in the boundary condition
    Dabbaghian, A. H.
    Akbarpoor, S.
    Vahidi, J.
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 2 (03): : 483 - 487
  • [6] A nonlinear elliptic eigenvalue–transmission problem with Neumann boundary condition
    Luminiţa Barbu
    Gheorghe Moroşanu
    Cornel Pintea
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 821 - 836
  • [7] Existence results for a p(x)-Laplacian problem with nonlinear boundary condition
    Hammou, Mustapha Ait
    [J]. AFRIKA MATEMATIKA, 2022, 33 (04)
  • [8] Initial boundary value problem for the focusing nonlinear Schrodinger equation with Robin boundary condition: half-line approach
    Its, Alexander
    Shepelsky, Dmitry
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2149):
  • [9] Two-Phase Robin Problem Incorporating Nonlinear Boundary Condition
    Hashemi, F.
    Alimohammady, M.
    Cesarano, C.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (03) : 1097 - 1116
  • [10] Robin boundary condition and shock problem for the focusing nonlinear Schrodinger equation
    Kamvissis, Spyridon
    Shepelsky, Dmitry
    Zielinski, Lech
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2015, 22 (03) : 448 - 473