On the relation between interior critical points and parameters for a class of nonlinear problems with Neumann-Robin boundary conditions

被引:2
|
作者
Afrouzi, G. A. [1 ]
Moghaddam, M. Khaleghy [1 ]
机构
[1] Mazandaran Univ, Fac Basic Sci, Dept Math, Babol Sar 474161467, Iran
关键词
D O I
10.1016/j.chaos.2005.08.164
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider boundary value problem [GRAPHICS] where alpha >= 0, lambda > 0 are parameters and f is an element of C-2[0,infinity) such that f(0) < 0. In this paper we study for the cases p is an element of (0, beta) and p is an element of (beta, theta) (p is the value of the solution at x = 0 and beta, theta are such that f(beta) = 0, F(theta) = integral(theta)(0) f(t) dt = 0), the relation between A and the number of interior critical points of the positive solutions of the above system. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1109 / 1114
页数:6
相关论文
共 50 条
  • [1] Positive solutions for a class of nonlinear boundary value problems with Neumann-Robin boundary conditions
    Anuradha, V
    Maya, C
    Shivaji, R
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 236 (01) : 94 - 124
  • [2] Existence and multiplicity results for a class of p-Laplacian problems with Neumann-Robin boundary conditions
    Afrouzi, G. A.
    Moghaddam, M. Khaleghy
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 30 (04) : 967 - 973
  • [3] On a nonlinear transmission eigenvalue problem with a Neumann-Robin boundary condition
    Barbu, Luminita
    Burlacu, Andreea
    Morosanu, Gheorghe
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (17) : 18375 - 18386
  • [4] Artificial Neural Networks to Solve the Singular Model with Neumann-Robin, Dirichlet and Neumann Boundary Conditions
    Nisar, Kashif
    Sabir, Zulqurnain
    Raja, Muhammad Asif Zahoor
    Ibrahim, Ag Asri Ag
    Rodrigues, Joel J. P. C.
    Mahmoud, Samy Refahy
    Chowdhry, Bhawani Shankar
    Gupta, Manoj
    [J]. SENSORS, 2021, 21 (19)
  • [5] A compact finite difference method for a general class of nonlinear singular boundary value problems with Neumann and Robin boundary conditions
    Roul, Pradip
    Goura, V. M. K. Prasad
    Agarwal, Ravi
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 350 : 283 - 304
  • [6] Uniqueness of critical points of solutions to the mean curvature equation with Neumann and Robin boundary conditions
    Deng, Haiyun
    Liu, Hairong
    Tian, Long
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (02) : 1072 - 1086
  • [7] Haar wavelet collocation method for Lane-Emden equations with Dirichlet, Neumann and Neumann-Robin boundary conditions
    Singh, Randhir
    Garg, Himanshu
    Guleria, Vandana
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 346 : 150 - 161
  • [8] Multiple Solutions for a Class of Bi-nonlocal Problems with Nonlinear Neumann Boundary Conditions
    Afrouzi, Ghasem A.
    Naghizadeh, Z.
    Chung, N. T.
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [9] Indefinite weight nonlinear problems with Neumann boundary conditions
    Sovrano, Elisa
    Zanolin, Fabio
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (01) : 126 - 147
  • [10] Inverse problems for parabolic equations with interior degeneracy and Neumann boundary conditions
    Boutaayamou, Idriss
    Fragnelli, Genni
    Maniar, Lahcen
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2016, 24 (03): : 275 - 292