Gaussian and hermite Ornstein-Uhlenbeck processes

被引:1
|
作者
Es-Sebaiy, Khalifa [1 ]
机构
[1] Kuwait Univ, Fac Sci, Dept Math, Kuwait, Kuwait
关键词
Gaussian and Hermite Ornstein-Uhlenbeck processes; auto-covariance function; stationarity and ergodicity; Secondary; STOCHASTIC VOLATILITY; PARAMETER-ESTIMATION; LONG-MEMORY;
D O I
10.1080/07362994.2021.2022495
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we study the asymptotic behavior of the auto-covariance function for Ornstein-Uhlenbeck (OU) processes driven by Gaussian noises with stationary and non-stationary increments and for Hermite OU processes. Our results are generalizations of the corresponding results of Cheridito et al. and Kaarakka and Salminen.
引用
收藏
页码:394 / 423
页数:30
相关论文
共 50 条
  • [1] On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes
    Bercu, Bernard
    Proia, Frederic
    Savy, Nicolas
    STATISTICS & PROBABILITY LETTERS, 2014, 85 : 36 - 44
  • [2] Hermite Ornstein-Uhlenbeck processes mixed with a Gamma distribution
    Douissi, Soukaina
    Es-Sebaiy, Khalifa
    Tudor, Ciprian A.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 96 (1-2): : 23 - 44
  • [3] Quasi Ornstein-Uhlenbeck processes
    Barndorff-Nielsen, Ole E.
    Basse-O'Connor, Andreas
    BERNOULLI, 2011, 17 (03) : 916 - 941
  • [4] Generalized Ornstein-Uhlenbeck processes
    Bezuglyy, V.
    Mehlig, B.
    Wilkinson, M.
    Nakamura, K.
    Arvedson, E.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (07)
  • [5] Spherical Ornstein-Uhlenbeck Processes
    Michael Wilkinson
    Alain Pumir
    Journal of Statistical Physics, 2011, 145
  • [6] CRITICAL ORNSTEIN-UHLENBECK PROCESSES
    PAVON, M
    APPLIED MATHEMATICS AND OPTIMIZATION, 1986, 14 (03): : 265 - 276
  • [7] ON CONDITIONAL ORNSTEIN-UHLENBECK PROCESSES
    SALMINEN, P
    ADVANCES IN APPLIED PROBABILITY, 1984, 16 (04) : 920 - 922
  • [8] Volatility Estimation of Gaussian Ornstein-Uhlenbeck Processes of the Second Kind
    Belfadli, Rachid
    Es-Sebaiy, Khalifa
    Farah, Fatima-Ezzahra
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (01) : 860 - 876
  • [9] Parameter identification for the Hermite Ornstein-Uhlenbeck process
    Assaad, Obayda
    Tudor, Ciprian A.
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (02) : 251 - 270
  • [10] Spherical Ornstein-Uhlenbeck Processes
    Wilkinson, Michael
    Pumir, Alain
    JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (01) : 113 - 142