Generalized Ornstein-Uhlenbeck processes

被引:27
|
作者
Bezuglyy, V. [1 ]
Mehlig, B.
Wilkinson, M.
Nakamura, K.
Arvedson, E.
机构
[1] Gothenburg Univ, Dept Phys, S-41296 Gothenburg, Sweden
[2] Open Univ, Fac Math & Comp, Milton Keynes MK7 6AA, Bucks, England
[3] Osaka City Univ, Dept Appl Phys, Osaka 5588585, Japan
关键词
D O I
10.1063/1.2206878
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We solve a physically significant extension of a classic problem in the theory of diffusion, namely the Ornstein-Uhlenbeck process [Ornstein and Uhlenbeck, Phys. Rev. 36, 823 (1930)]. Our generalized Ornstein-Uhlenbeck systems include a force which depends upon the position of the particle, as well as upon time. They exhibit anomalous diffusion at short times, and non-Maxwellian velocity distributions in equilibrium. Two approaches are used. Some statistics are obtained from a closed-form expression for the propagator of the Fokker-Planck equation for the case where the particle is initially at rest. In the general case we use spectral decomposition of a Fokker-Planck equation, employing nonlinear creation and annihilation operators to generate the spectrum which consists of two staggered ladders. (c) 2006 American Institute of Physics.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes
    Bercu, Bernard
    Proia, Frederic
    Savy, Nicolas
    STATISTICS & PROBABILITY LETTERS, 2014, 85 : 36 - 44
  • [2] Multivariate generalized Ornstein-Uhlenbeck processes
    Behme, Anita
    Lindner, Alexander
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (04) : 1487 - 1518
  • [3] The stationarity of multidimensional generalized Ornstein-Uhlenbeck processes
    Endo, Kotaro
    Matsui, Muneya
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (14) : 2265 - 2272
  • [4] Exact propagator for generalized Ornstein-Uhlenbeck processes
    Mota-Furtado, F.
    O'Mahony, P. F.
    PHYSICAL REVIEW E, 2007, 75 (04):
  • [5] Time irregularity of generalized Ornstein-Uhlenbeck processes
    Brzezniak, Zdzislaw
    Goldys, Ben
    Imkeller, Peter
    Peszat, Szymon
    Priola, Enrico
    Zabczyk, Jerzy
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (5-6) : 273 - 276
  • [6] Statistical inference for generalized Ornstein-Uhlenbeck processes
    Belomestny, Denis
    Panov, Vladimir
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 1974 - 2006
  • [7] Ergodic properties of generalized Ornstein-Uhlenbeck processes
    Kevei, Peter
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (01) : 156 - 181
  • [8] The generalized Ornstein-Uhlenbeck process
    Caceres, MO
    Budini, AA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (24): : 8427 - 8444
  • [9] Generalized Ornstein-Uhlenbeck processes on separable Banach spaces
    Mandrekar, V.
    Ruediger, B.
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS V, 2008, 59 : 261 - +
  • [10] A GENERALIZED ORNSTEIN-UHLENBECK PROCESS
    WITTIG, TA
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1984, 13 (01) : 29 - 43