Gaussian and hermite Ornstein-Uhlenbeck processes

被引:1
|
作者
Es-Sebaiy, Khalifa [1 ]
机构
[1] Kuwait Univ, Fac Sci, Dept Math, Kuwait, Kuwait
关键词
Gaussian and Hermite Ornstein-Uhlenbeck processes; auto-covariance function; stationarity and ergodicity; Secondary; STOCHASTIC VOLATILITY; PARAMETER-ESTIMATION; LONG-MEMORY;
D O I
10.1080/07362994.2021.2022495
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we study the asymptotic behavior of the auto-covariance function for Ornstein-Uhlenbeck (OU) processes driven by Gaussian noises with stationary and non-stationary increments and for Hermite OU processes. Our results are generalizations of the corresponding results of Cheridito et al. and Kaarakka and Salminen.
引用
收藏
页码:394 / 423
页数:30
相关论文
共 50 条
  • [31] Functionals of complex Ornstein-Uhlenbeck processes
    Arató, M
    Baran, S
    Ispány, M
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 37 (01) : 1 - 13
  • [32] SUPPORTS OF SUPER ORNSTEIN-UHLENBECK PROCESSES
    BAO, UF
    CHINESE SCIENCE BULLETIN, 1995, 40 (13): : 1057 - 1062
  • [33] Multivariate generalized Ornstein-Uhlenbeck processes
    Behme, Anita
    Lindner, Alexander
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (04) : 1487 - 1518
  • [34] ASYMPTOTICS OF MAXIMUM LIKELIHOOD PARAMETER ESTIMATES FOR GAUSSIAN PROCESSES: THE ORNSTEIN-UHLENBECK PRIOR
    Karvonen, Toni
    Tronarp, Filip
    Sarkka, Simo
    2019 IEEE 29TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2019,
  • [36] Modeling Stationary Data by a Class of Generalized Ornstein-Uhlenbeck Processes: The Gaussian Case
    Arratia, Argimiro
    Cabana, Alejandra
    Cabana, Enrique M.
    ADVANCES IN INTELLIGENT DATA ANALYSIS XIII, 2014, 8819 : 13 - 24
  • [37] Bayesian inference for non-Gaussian Ornstein-Uhlenbeck stochastic volatility processes
    Roberts, GO
    Papaspiliopoulos, O
    Dellaportas, P
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 369 - 393
  • [38] Ornstein-Uhlenbeck processes in Hilbert space with non-Gaussian stochastic volatility
    Benth, Fred Espen
    Ruediger, Barbara
    Suess, Andre
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (02) : 461 - 486
  • [39] The stationarity of multidimensional generalized Ornstein-Uhlenbeck processes
    Endo, Kotaro
    Matsui, Muneya
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (14) : 2265 - 2272
  • [40] Skew Ornstein-Uhlenbeck processes and their financial applications
    Wang, Suxin
    Song, Shiyu
    Wang, Yongjin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 273 : 363 - 382