Enhanced laser-driven backward proton acceleration using micro-wire array targets

被引:1
|
作者
Fan, Lulin [1 ,2 ,3 ]
Xu, Tongjun [1 ,2 ]
Wang, Qingsong [1 ,2 ]
Xu, Jiancai [1 ,2 ]
Zhang, Guoqiang [4 ,5 ]
Wang, Putong [3 ,4 ]
Fu, Changbo [6 ]
Ma, Zhiguo [6 ]
Deng, Xiangai [6 ]
Ma, Yugang [6 ]
Li, Shun [1 ,2 ]
Lu, Xiaoming [1 ,2 ]
Li, Jinfeng [1 ,2 ]
Xu, Rongjie [1 ,2 ]
Wang, Cheng [1 ,2 ]
Liang, Xiaoyan [1 ,2 ]
Leng, Yuxin [1 ,2 ]
Shen, Baifei [1 ,2 ,7 ]
Ji, Liangliang [1 ,2 ]
Li, Ruxin [1 ,2 ,8 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, Shanghai, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, CAS Ctr Excellence Ultra Intense Laser Sci, Shanghai, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing, Peoples R China
[4] Chinses Acad Sci, Shanghai Inst Appl Phys, Shanghai, Peoples R China
[5] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai, Peoples R China
[6] Fudan Univ, Inst Modern Phys, Key Lab Nucl Phys & Ion Beam Applicat MOE, Shanghai, Peoples R China
[7] Shanghai Normal Univ, Dept Phys, Shanghai, Peoples R China
[8] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
laser-proton acceleration; micro-wire structure; high laser-proton energy coupling efficiency; high energy density plasma; laser-induced nuclear fusion; GENERATION;
D O I
10.3389/fphy.2023.1167927
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Micro-structured targets can be employed to enhance the coupling of laser energy to the high energy density plasma. Here we report on experimental measurement of enhanced proton beam energy from laser-driven micro-wire array (MWA) targets along the backward direction. An ultra-intense (similar to 2 x 10(20)W/cm(2)) laser pulse of similar to 40 fs pulse duration interacts with the MWA structure and induces large population of energetic electrons. The enhanced sheath field efficiently accelerates protons both transversely and longitudinally. The spectrometers record proton cut-off energy of around 16 MeV and temperature 813keV along the backward direction, which is 20% - 60% higher than that of a flat target under commensurate laser conditions. Comparison with particle-in-cell simulations suggests that the enhancement originates from the increased temperature and population of the hot electrons within the micro-wires. These measurements provide a direct probe of the high energy density plasma condition in laser-driven solid targets and a useful benchmark for further studies on laser-driven micro-structured targets.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Enhanced Laser-Driven Ion Acceleration in the Relativistic Transparency Regime
    Henig, A.
    Kiefer, D.
    Markey, K.
    Gautier, D. C.
    Flippo, K. A.
    Letzring, S.
    Johnson, R. P.
    Shimada, T.
    Yin, L.
    Albright, B. J.
    Bowers, K. J.
    Fernandez, J. C.
    Rykovanov, S. G.
    Wu, H. -C.
    Zepf, M.
    Jung, D.
    Liechtenstein, V. Kh.
    Schreiber, J.
    Habs, D.
    Hegelich, B. M.
    PHYSICAL REVIEW LETTERS, 2009, 103 (04)
  • [42] Fabrication and characterization of thin polymer targets for laser-driven ion acceleration
    Tebartz, A.
    Bedacht, S.
    Schaumann, G.
    Roth, M.
    5TH TARGET FABRICATION WORKSHOP, 2016, 713
  • [43] Laser-driven acceleration of protons from hydrogenated annealed silicon targets
    Picciotto, A.
    Margarone, D.
    Krasa, J.
    Velyhan, A.
    Serra, E.
    Bellutti, P.
    Scarduelli, G.
    Calliari, L.
    Krousky, E.
    Rus, B.
    Dapor, M.
    EPL, 2010, 92 (03)
  • [44] Cascaded solenoid acceleration of vortex laser-driven collimated proton beam
    Sun, X. Y.
    Wang, W. P.
    Dong, H.
    He, J. Z.
    Shi, Z. Y.
    Leng, Y. X.
    Li, R. X.
    Xu, Z. Z.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2023, 65 (09)
  • [45] Experimental study on laser-driven electron collimation along wire targets
    Zeng, Yushan
    Tian, Ye
    Zhou, Chuliang
    Li, Zhongpeng
    Liu, Jiansheng
    Xu, Zhizhan
    PHYSICS OF PLASMAS, 2019, 26 (01)
  • [46] Physics of chromatic focusing, post-acceleration and bunching of laser-driven proton beams in helical coil targets
    Bardon, M.
    Moreau, J. G.
    Romagnani, L.
    Rousseaux, C.
    Ferri, M.
    Lefevre, F.
    Lantuejoul, I
    Etchessahar, B.
    Bazzoli, S.
    Farcage, D.
    Maskrot, H.
    Serres, F.
    Chevrot, M.
    Loyez, E.
    Veuillot, E.
    Cayzac, W.
    Vauzour, B.
    Boutoux, G.
    Sary, G.
    La Fontaine, A. Compant
    Gremillet, L.
    Poye, A.
    Humieres, E. D.
    Tikhonchuk, V. T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (12)
  • [47] Enhanced laser-driven proton acceleration from a relativistically transparent transversely nano-striped target
    Wang, Jingwei
    Murakami, Masakatsu
    Xu, Han
    Ju, Jingjing
    Yu, Wei
    PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (11)
  • [48] Dual stage approach to laser-driven helical coil proton acceleration
    Ferguson, S.
    Martin, P.
    Ahmed, H.
    Aktan, E.
    Alanazi, M.
    Cerchez, M.
    Doria, D.
    Green, J. S.
    Greenwood, B.
    Odlozilik, B.
    Willi, O.
    Borghesi, M.
    Kar, S.
    NEW JOURNAL OF PHYSICS, 2023, 25 (01):
  • [49] Manipulating laser-driven proton acceleration with tailored target density profile
    Yang, Y. C.
    Zhou, C. T.
    Huang, T. W.
    He, M. Q.
    Wu, S. Z.
    Cai, T. X.
    Qiao, B.
    Yu, M. Y.
    Ruan, S. C.
    He, X. T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (08)
  • [50] Laser-driven acceleration of a 94.8 MeV uniform proton beam enhanced by a thin axial absorber rod
    Al-Omari, Husam Y.
    Yahia, Mohamed E.
    Almomani, Ali M.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2024, 27 (07)