Enhanced laser-driven backward proton acceleration using micro-wire array targets

被引:1
|
作者
Fan, Lulin [1 ,2 ,3 ]
Xu, Tongjun [1 ,2 ]
Wang, Qingsong [1 ,2 ]
Xu, Jiancai [1 ,2 ]
Zhang, Guoqiang [4 ,5 ]
Wang, Putong [3 ,4 ]
Fu, Changbo [6 ]
Ma, Zhiguo [6 ]
Deng, Xiangai [6 ]
Ma, Yugang [6 ]
Li, Shun [1 ,2 ]
Lu, Xiaoming [1 ,2 ]
Li, Jinfeng [1 ,2 ]
Xu, Rongjie [1 ,2 ]
Wang, Cheng [1 ,2 ]
Liang, Xiaoyan [1 ,2 ]
Leng, Yuxin [1 ,2 ]
Shen, Baifei [1 ,2 ,7 ]
Ji, Liangliang [1 ,2 ]
Li, Ruxin [1 ,2 ,8 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, Shanghai, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, CAS Ctr Excellence Ultra Intense Laser Sci, Shanghai, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing, Peoples R China
[4] Chinses Acad Sci, Shanghai Inst Appl Phys, Shanghai, Peoples R China
[5] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai, Peoples R China
[6] Fudan Univ, Inst Modern Phys, Key Lab Nucl Phys & Ion Beam Applicat MOE, Shanghai, Peoples R China
[7] Shanghai Normal Univ, Dept Phys, Shanghai, Peoples R China
[8] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
laser-proton acceleration; micro-wire structure; high laser-proton energy coupling efficiency; high energy density plasma; laser-induced nuclear fusion; GENERATION;
D O I
10.3389/fphy.2023.1167927
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Micro-structured targets can be employed to enhance the coupling of laser energy to the high energy density plasma. Here we report on experimental measurement of enhanced proton beam energy from laser-driven micro-wire array (MWA) targets along the backward direction. An ultra-intense (similar to 2 x 10(20)W/cm(2)) laser pulse of similar to 40 fs pulse duration interacts with the MWA structure and induces large population of energetic electrons. The enhanced sheath field efficiently accelerates protons both transversely and longitudinally. The spectrometers record proton cut-off energy of around 16 MeV and temperature 813keV along the backward direction, which is 20% - 60% higher than that of a flat target under commensurate laser conditions. Comparison with particle-in-cell simulations suggests that the enhancement originates from the increased temperature and population of the hot electrons within the micro-wires. These measurements provide a direct probe of the high energy density plasma condition in laser-driven solid targets and a useful benchmark for further studies on laser-driven micro-structured targets.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Laser-driven proton acceleration from ultrathin foils with nanoholes
    Giada Cantono
    Alexander Permogorov
    Julien Ferri
    Evgeniya Smetanina
    Alexandre Dmitriev
    Anders Persson
    Tünde Fülöp
    Claes-Göran Wahlström
    Scientific Reports, 11
  • [32] Characterization of laser-driven proton acceleration from water microdroplets
    Becker, Georg A.
    Schwab, Matthew B.
    Loetzsch, Robert
    Tietze, Stefan
    Kloepfel, Diethard
    Rehwald, Martin
    Schlenvoigt, Hans-Peter
    Saevert, Alexander
    Schramm, Ulrich
    Zepf, Matt
    Kaluza, Malte C.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [33] Laser-driven proton acceleration: source optimization and radiographic applications
    Borghesi, M.
    Bigongiari, A.
    Kar, S.
    Macchi, A.
    Romagnani, L.
    Audebert, P.
    Fuchs, J.
    Toncian, T.
    Willi, O.
    Bulanov, S. V.
    Mackinnon, A. J.
    Gauthier, J. C.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (12)
  • [34] Characterization of laser-driven proton acceleration from water microdroplets
    Georg A. Becker
    Matthew B. Schwab
    Robert Lötzsch
    Stefan Tietze
    Diethard Klöpfel
    Martin Rehwald
    Hans-Peter Schlenvoigt
    Alexander Sävert
    Ulrich Schramm
    Matt Zepf
    Malte C. Kaluza
    Scientific Reports, 9
  • [35] Laser-driven proton acceleration from ultrathin foils with nanoholes
    Cantono, Giada
    Permogorov, Alexander
    Ferri, Julien
    Smetanina, Evgeniya
    Dmitriev, Alexandre
    Persson, Anders
    Fulop, Tuende
    Wahlstrom, Claes-Goeran
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [36] High-intensity laser-driven proton acceleration enhancement from hydrogen containing ultrathin targets
    Dollar, F.
    Reed, S. A.
    Matsuoka, T.
    Bulanov, S. S.
    Chvykov, V.
    Kalintchenko, G.
    McGuffey, C.
    Rousseau, P.
    Thomas, A. G. R.
    Willingale, L.
    Yanovsky, V.
    Litzenberg, D. W.
    Krushelnick, K.
    Maksimchuk, A.
    APPLIED PHYSICS LETTERS, 2013, 103 (14)
  • [37] Enhanced laser-driven proton-acceleration from limited mass targets by high temporal contrast ultra-intense lasers
    Buffechoux, S.
    Nakatsutsumi, M.
    Andreev, A.
    Zeil, K.
    Burris, T.
    Sarri, G.
    Amin, M.
    Antici, P.
    Fourmaux, S.
    Gaillard, S.
    Mancic, A.
    Tampo, M.
    Pepin, H.
    Audebert, P.
    Willi, O.
    Cowan, T.
    Borghesi, M.
    Fuchs, J.
    LIGHT AT EXTREME INTENSITIES: OPPORTUNITIES AND TECHNOLOGICAL ISSUES OF THE EXTREME LIGHT INFRASTRUCTURE, 2010, 1228 : 279 - +
  • [38] Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity
    J. H. Bin
    K. Allinger
    K. Khrennikov
    S. Karsch
    P. R. Bolton
    J. Schreiber
    Scientific Reports, 7
  • [39] Laser-driven proton acceleration and plasma diagnostics with J-KAREN laser
    Pirozhkov, A. S.
    Mori, M.
    Yogo, A.
    Kiriyama, H.
    Ogura, K.
    Sagisaka, A.
    Ma, J. -L.
    Orimo, S.
    Nishiuchi, M.
    Sugiyama, H.
    Esirkepov, T. Zh.
    Bulanov, S. V.
    Okada, H.
    Kondo, S.
    Kanazawa, S.
    Nakai, Y.
    Akutsu, A.
    Motomura, T.
    Tanoue, M.
    Shimomura, T.
    Ikegami, M.
    Shirai, T.
    Iwashita, Y.
    Noda, A.
    Choi, I. W.
    Lee, S. K.
    Lee, J.
    Oishi, Y.
    Kimura, T.
    Tajima, T.
    Daido, H.
    NONLINEAR OPTICS AND APPLICATIONS III, 2009, 7354
  • [40] Dynamics of laser-driven proton acceleration exhibited by measured laser absorptivity and reflectivity
    Bin, J. H.
    Allinger, K.
    Khrennikov, K.
    Karsch, S.
    Bolton, P. R.
    Schreiber, J.
    SCIENTIFIC REPORTS, 2017, 7