Semiparametric Density Ratio Model for Survival Data with a Cure Fraction

被引:0
|
作者
Zhong, Weibin [1 ]
Diao, Guoqing [2 ]
机构
[1] Berkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
[2] George Washington Univ, Dept Biostat & Bioinformat, 950 New Hampshire Ave NW, Washington, DC 20052 USA
关键词
Cure rate model; Density ratio model; Nonparametric maximum likelihood estimation; Semiparametric inference; PROPORTIONAL HAZARDS MODEL; REGRESSION-MODEL; MIXTURE MODEL; RATES;
D O I
10.1007/s12561-022-09357-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper proposes a class of semiparametric transformation models for survival data with a cure fraction. Particularly, we assume a semiparametric density ratio model for the unknown proper conditional distribution function. The density ratio model is closely related to the generalized linear models and is desirable for modeling skewed survival data. We develop nonparametric likelihood-based estimation and inference procedures. Compared to some existing cure rate models, the estimation of the unknown proper baseline cumulative distribution function is more natural without imposing additional constraints. We establish the consistency and asymptotic normality of the proposed nonparametric maximum likelihood estimators. Extensive simulation studies demonstrate that the proposed methods perform well under practical settings. The proposed methods are also shown to be robust under certain model mis-specifications. We illustrate the proposed methods using two real applications.
引用
收藏
页码:217 / 241
页数:25
相关论文
共 50 条
  • [1] Semiparametric Density Ratio Model for Survival Data with a Cure Fraction
    Weibin Zhong
    Guoqing Diao
    Statistics in Biosciences, 2023, 15 : 217 - 241
  • [2] Semiparametric transformation models for survival data with a cure fraction
    Zeng, Donglin
    Yin, Guosheng
    Ibrahim, Joseph G.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) : 670 - 684
  • [3] Bayesian semiparametric models for survival data with a cure fraction
    Ibrahim, JG
    Chen, MH
    Sinha, D
    BIOMETRICS, 2001, 57 (02) : 383 - 388
  • [4] Fully semiparametric Bayesian approach for modeling survival data with cure fraction
    Demarqui, Fabio N.
    Dey, Dipak K.
    Loschi, Rosangela H.
    Colosimo, Enrico A.
    BIOMETRICAL JOURNAL, 2014, 56 (02) : 198 - 218
  • [5] Semiparametric analysis of clustered interval-censored survival data with a cure fraction
    Lam, K. F.
    Wong, Kin-Yau
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 79 : 165 - 174
  • [6] A semiparametric marginal mixture cure model for clustered survival data
    Niu, Yi
    Peng, Yingwei
    STATISTICS IN MEDICINE, 2013, 32 (14) : 2364 - 2373
  • [7] Semiparametric density ratio modeling of survival data from a prevalent cohort
    Zhu, Hong
    Ning, Jing
    Shen, Yu
    Qin, Jing
    BIOSTATISTICS, 2017, 18 (01) : 62 - 75
  • [8] Marginal semiparametric accelerated failure time cure model for clustered survival data
    Niu, Yi
    Fan, Duze
    Ding, Jie
    Peng, Yingwei
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2025, 34 (01) : 150 - 169
  • [9] A new joint model for longitudinal and survival data with a cure fraction
    Chen, MH
    Ibrahim, JG
    Sinha, D
    JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 91 (01) : 18 - 34
  • [10] A new threshold regression model for survival data with a cure fraction
    Kim, Sungduk
    Chen, Ming-Hui
    Dey, Dipak K.
    LIFETIME DATA ANALYSIS, 2011, 17 (01) : 101 - 122