Multimodal fake news detection on social media: a survey of deep learning techniques

被引:8
|
作者
Comito, Carmela [1 ]
Caroprese, Luciano [2 ]
Zumpano, Ester [3 ]
机构
[1] ICAR CNR, Arcavacata Di Rende, Italy
[2] Univ Calabria, DIMES, Arcavacata Di Rende, Italy
[3] Univ G dAnnunzio, INGEO, Pescara, Italy
关键词
Fake news; Deep learning; Social media;
D O I
10.1007/s13278-023-01104-w
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The escalation of false information related to the massive use of social media has become a challenging problem, and significant is the effort of the research community in providing effective solutions to detecting it. Fake news are spreading for decades, but with the rise of social media, the nature of misinformation has evolved from text-based modality to visual modalities, such as images, audio, and video. Therefore, the identification of media-rich fake news requires an approach that exploits and effectively combines the information acquired from different multimodal categories. Multimodality is a key approach to improving fake news detection, but effective solutions supporting it are still poorly explored. More specifically, many different works exist that investigate if a text, an image, or a video is fake or not, but effective research on a real multimodal setting, 'fusing' the different modalities with their different structure and dimension is still an open problem. The paper is a focused survey concerning a very specific topic which is the use of deep learning (DL) methods for multimodal fake news detection on social media. The survey provides, for each work surveyed, a description of some relevant features such as the DL method used, the type of analysed data, and the fusion strategy adopted. The paper also highlights the main limitations of the current state of the art and draws some future directions to address open questions and challenges, including explainability and effective cross-domain fake news detection strategies.
引用
下载
收藏
页数:22
相关论文
共 50 条
  • [31] Unveiling the hidden patterns: A novel semantic deep learning approach to fake news detection on social media
    Alghamdi, Jawaher
    Lin, Yuqing
    Luo, Suhuai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 137
  • [32] Towards Fake News Detection on Social Media
    Alghamdi, Jawaher
    Lin, Yuqing
    Luo, Suhuai
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 148 - 153
  • [33] Fake News Detection on Social Networks: A Survey
    Shen, Yanping
    Liu, Qingjie
    Guo, Na
    Yuan, Jing
    Yang, Yanqing
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [34] Fake News Detection Using Deep Learning
    Lee, Dong-Ho
    Kim, Yu-Ri
    Kim, Hyeong-Jun
    Park, Seung-Myun
    Yang, Yu-Jun
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2019, 15 (05): : 1119 - 1130
  • [35] Multimodal Fake News Detection
    Segura-Bedmar, Isabel
    Alonso-Bartolome, Santiago
    INFORMATION, 2022, 13 (06)
  • [36] Fake News Detection using Deep Learning
    Kong, Sheng How
    Tan, Li Mei
    Gan, Keng Hoon
    Samsudin, Nur Hana
    IEEE 10TH SYMPOSIUM ON COMPUTER APPLICATIONS AND INDUSTRIAL ELECTRONICS (ISCAIE 2020), 2020, : 102 - 107
  • [37] A Deep Learning Approach to Fake News Detection
    Masciari, Elio
    Moscato, Vincenzo
    Picariello, Antonio
    Sperli, Giancarlo
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2020), 2020, 12117 : 113 - 122
  • [38] Deep learning methods for Fake News detection
    Kresnakova, Viera Maslej
    Sarnovsky, Martin
    Butka, Peter
    IEEE JOINT 19TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS AND 7TH INTERNATIONAL CONFERENCE ON RECENT ACHIEVEMENTS IN MECHATRONICS, AUTOMATION, COMPUTER SCIENCES AND ROBOTICS (CINTI-MACRO 2019), 2019, : 143 - 148
  • [39] Trends in combating fake news on social media - a survey
    Collins, Botambu
    Dinh Tuyen Hoang
    Ngoc Thanh Nguyen
    Hwang, Dosam
    JOURNAL OF INFORMATION AND TELECOMMUNICATION, 2021, 5 (02) : 247 - 266
  • [40] A Semi-supervised Learning Method for Fake News Detection in Social Media
    Mansouri, Reza
    Naderan-Tahan, Mahmood
    Rashti, Mohammad Javad
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 1662 - 1666