STRUCTURAL CONSTRAINED VIRTUAL HISTOLOGY STAINING FOR HUMAN CORONARY IMAGING USING DEEP LEARNING

被引:2
|
作者
Li, Xueshen [1 ]
Liu, Hongshan [1 ]
Song, Xiaoyu [3 ]
Brott, Brigitta C. [2 ]
Litovsky, Silvio H. [2 ]
Gan, Yu [1 ]
机构
[1] Stevens Insitute Technol, Dept Biomed Engn, Hoboken, NJ 07030 USA
[2] Univ Alabama Birmingham, Sch Med, Birmingham, AL USA
[3] Icahn Sch Med Mt Sinai, New York, NY 10029 USA
基金
美国国家科学基金会;
关键词
Virtual histology; Coronary artery disease; Optical coherence tomography; Deep learning; OPTICAL COHERENCE TOMOGRAPHY;
D O I
10.1109/ISBI53787.2023.10230480
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Histopathological analysis is crucial in artery characterization for coronary artery disease (CAD). However, histology requires an invasive and time-consuming process. In this paper, we propose to generate virtual histology staining using Optical Coherence Tomography (OCT) images to enable real-time histological visualization. We develop a deep learning network, namely Coronary-GAN, to transfer coronary OCT images to virtual histology images. With a special consideration on the structural constraints in coronary OCT images, our method achieves better image generation performance than the conventional GAN-based method. The experimental results indicate that Coronary-GAN generates virtual histology images that are similar to real histology images, revealing the human coronary layers.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Identifying transcriptomic correlates of histology using deep learning
    Badea, Liviu
    Stanescu, Emil
    PLOS ONE, 2020, 15 (11):
  • [22] Identification of coronary calcifications in optical coherence tomography imaging using deep learning
    Yarden Avital
    Akiva Madar
    Shlomi Arnon
    Edward Koifman
    Scientific Reports, 11
  • [23] Identification of coronary calcifications in optical coherence tomography imaging using deep learning
    Avital, Yarden
    Madar, Akiva
    Arnon, Shlomi
    Koifman, Edward
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [24] An international collaborative approach to learning histology using a virtual microscope
    Then, Sue-Mian
    Kokolski, Marie
    Mbaki, Yvonne
    Merrick, Deborah
    Anderson, Susan
    ANATOMIA HISTOLOGIA EMBRYOLOGIA, 2023, 52 (01) : 21 - 30
  • [25] Deep-learning-enabled virtual immunofluorescence staining based on reflectance microscopy
    Cheng, Shiyi
    Fu, Sipei
    Kim, Yumi Mun
    Yi, Ji
    Tian, Lei
    2020 IEEE PHOTONICS CONFERENCE (IPC), 2020,
  • [26] Virtual brightfield and fluorescence staining for Fourier ptychography via unsupervised deep learning
    Wang, Ruihai
    Song, Pengming
    Jiang, Shaowei
    Yan, Chenggang
    Zhu, Jiakai
    Guo, Chengfei
    Bian, Zichao
    Wang, Tianbo
    Zheng, Guoan
    OPTICS LETTERS, 2020, 45 (19) : 5405 - 5408
  • [27] Virtual Monoenergetic CT Imaging via Deep Learning
    Cong, Wenxiang
    Xi, Yan
    Fitzgerald, Paul
    De Man, Bruno
    Wang, Ge
    PATTERNS, 2020, 1 (08):
  • [28] Label-Free Virtual HER2 Immunohistochemical Staining of Breast Tissue using Deep Learning
    Bai, Bijie
    Wang, Hongda
    Li, Yuzhu
    De Haan, Kevin
    Colonnese, Francesco
    Wan, Yujie
    Zuo, Jingyi
    Doan, Ngan B.
    Zhang, Xiaoran
    Zhang, Yijie
    Li, Jingxi
    Yang, Xilin
    Dong, Wenjie
    Darrow, Morgan Angus
    Kamangar, Elham
    Lee, Han Sung
    Rivenson, Yair
    Ozcan, Aydogan
    BME FRONTIERS, 2022, 2022
  • [29] Virtual Gram staining of label-free bacteria using dark-field microscopy and deep learning
    Isil, Cagatay
    Koydemir, Hatice Ceylan
    Eryilmaz, Merve
    de Haan, Kevin
    Pillar, Nir
    Mentesoglu, Koray
    Unal, Aras Firat
    Rivenson, Yair
    Chandrasekaran, Sukantha
    Garner, Omai B.
    Ozcan, Aydogan
    SCIENCE ADVANCES, 2025, 11 (02):
  • [30] Computational tissue staining of non-linear multimodal imaging using supervised and unsupervised deep learning
    Pradhan, Pranita
    Meyer, Tobias
    Vieth, Michael
    Stallmach, Andreas
    Waldner, Maximilian
    Schmitt, Michael
    Popp, Juergen
    Bocklitz, Thomas
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (04) : 2280 - 2298