Virtual Gram staining of label-free bacteria using dark-field microscopy and deep learning

被引:0
|
作者
Isil, Cagatay [1 ,2 ,3 ]
Koydemir, Hatice Ceylan [4 ,5 ]
Eryilmaz, Merve [1 ,2 ,3 ]
de Haan, Kevin [1 ,2 ,3 ]
Pillar, Nir [1 ,2 ,3 ]
Mentesoglu, Koray [1 ]
Unal, Aras Firat [1 ,2 ,3 ]
Rivenson, Yair [1 ,2 ,3 ]
Chandrasekaran, Sukantha [6 ]
Garner, Omai B. [6 ]
Ozcan, Aydogan [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles, Elect & Comp Engn Dept, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Bioengn Dept, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA
[4] Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77843 USA
[5] Ctr Remote Hlth Technol & Syst, Texas A&M Engn Expt Stn, College Stn, TX 77843 USA
[6] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
来源
SCIENCE ADVANCES | 2025年 / 11卷 / 02期
关键词
IN-SITU HYBRIDIZATION; LIGHT-SCATTERING; ERROR; IDENTIFICATION; DIAGNOSIS;
D O I
10.1126/sciadv.ads2757
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gram staining has been a frequently used staining protocol in microbiology. It is vulnerable to staining artifacts due to, e.g., operator errors and chemical variations. Here, we introduce virtual Gram staining of label-free bacteria using a trained neural network that digitally transforms dark-field images of unstained bacteria into their Gram-stained equivalents matching bright-field image contrast. After a one-time training, the virtual Gram staining model processes an axial stack of dark-field microscopy images of label-free bacteria (never seen before) to rapidly generate Gram staining, bypassing several chemical steps involved in the conventional staining process. We demonstrated the success of virtual Gram staining on label-free bacteria samples containing Escherichia coli and Listeria innocua by quantifying the staining accuracy of the model and comparing the chromatic and morphological features of the virtually stained bacteria against their chemically stained counterparts. This virtual bacterial staining framework bypasses the traditional Gram staining protocol and its challenges, including stain standardization, operator errors, and sensitivity to chemical variations.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Super resolution label-free dark-field microscopy by deep learning
    Lei, Ming
    Zhao, Junxiang
    Zhou, Junxiao
    Lee, Hongki
    Wu, Qianyi
    Burns, Zachary
    Chen, Guanghao
    Liu, Zhaowei
    NANOSCALE, 2024, 16 (09) : 4703 - 4709
  • [2] Label-free identification of microplastics in human cells: dark-field microscopy and deep learning study
    Ishmukhametov, Ilnur
    Nigamatzyanova, Laysan
    Fakhrullina, Golnur
    Fakhrullin, Rawil
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2022, 414 (03) : 1297 - 1312
  • [3] Label-free identification of microplastics in human cells: dark-field microscopy and deep learning study
    Ilnur Ishmukhametov
    Läysän Nigamatzyanova
    Gӧlnur Fakhrullina
    Rawil Fakhrullin
    Analytical and Bioanalytical Chemistry, 2022, 414 : 1297 - 1312
  • [4] Deep Learning Assisted Plasmonic Dark-Field Microscopy for Super-Resolution Label-Free Imaging
    Lei, Ming
    Zhao, Junxiang
    Sahan, Ayse Z.
    Hu, Jie
    Zhou, Junxiao
    Lee, Hongki
    Wu, Qianyi
    Zhang, Jin
    Liu, Zhaowei
    NANO LETTERS, 2024, 24 (49) : 15724 - 15730
  • [5] Label-free hyperspectral dark-field microscopy for quantitative scatter imaging
    Cheney, Philip
    McClatchy, David
    Kanick, Stephen
    Lemaillet, Paul
    Allen, David
    Samarov, Daniel
    Pogue, Brian
    Hwang, Jeeseong
    DESIGN AND QUALITY FOR BIOMEDICAL TECHNOLOGIES X, 2017, 10056
  • [6] Virtual birefringence imaging and histological staining of amyloid deposits in label-free tissue using autofluorescence microscopy and deep learning
    Yang, Xilin
    Bai, Bijie
    Zhang, Yijie
    Aydin, Musa
    Li, Yuzhu
    Selcuk, Sahan Yoruc
    Costa, Paloma Casteleiro
    Guo, Zhen
    Fishbein, Gregory A.
    Atlan, Karine
    Wallace, William Dean
    Pillar, Nir
    Ozcan, Aydogan
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [7] PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning
    Yair Rivenson
    Tairan Liu
    Zhensong Wei
    Yibo Zhang
    Kevin de Haan
    Aydogan Ozcan
    Light: Science & Applications, 8
  • [8] PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning
    Rivenson, Yair
    Liu, Tairan
    Wei, Zhensong
    Zhang, Yibo
    de Haan, Kevin
    Ozcan, Aydogan
    LIGHT-SCIENCE & APPLICATIONS, 2019, 8 (1)
  • [9] A COMPARISON OF DARK-FIELD MICROSCOPY AND FLAGELLA STAINING FOR MONITORING SUBGINGIVAL BACTERIA
    COULTER, WA
    EMMERSON, AM
    COFFEY, A
    JOURNAL OF DENTAL RESEARCH, 1988, 67 (04) : 708 - 708
  • [10] Label-Free Virtual HER2 Immunohistochemical Staining of Breast Tissue using Deep Learning
    Bai, Bijie
    Wang, Hongda
    Li, Yuzhu
    De Haan, Kevin
    Colonnese, Francesco
    Wan, Yujie
    Zuo, Jingyi
    Doan, Ngan B.
    Zhang, Xiaoran
    Zhang, Yijie
    Li, Jingxi
    Yang, Xilin
    Dong, Wenjie
    Darrow, Morgan Angus
    Kamangar, Elham
    Lee, Han Sung
    Rivenson, Yair
    Ozcan, Aydogan
    BME FRONTIERS, 2022, 2022