Virtual Gram staining of label-free bacteria using dark-field microscopy and deep learning

被引:0
|
作者
Isil, Cagatay [1 ,2 ,3 ]
Koydemir, Hatice Ceylan [4 ,5 ]
Eryilmaz, Merve [1 ,2 ,3 ]
de Haan, Kevin [1 ,2 ,3 ]
Pillar, Nir [1 ,2 ,3 ]
Mentesoglu, Koray [1 ]
Unal, Aras Firat [1 ,2 ,3 ]
Rivenson, Yair [1 ,2 ,3 ]
Chandrasekaran, Sukantha [6 ]
Garner, Omai B. [6 ]
Ozcan, Aydogan [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles, Elect & Comp Engn Dept, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Bioengn Dept, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA
[4] Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77843 USA
[5] Ctr Remote Hlth Technol & Syst, Texas A&M Engn Expt Stn, College Stn, TX 77843 USA
[6] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
来源
SCIENCE ADVANCES | 2025年 / 11卷 / 02期
关键词
IN-SITU HYBRIDIZATION; LIGHT-SCATTERING; ERROR; IDENTIFICATION; DIAGNOSIS;
D O I
10.1126/sciadv.ads2757
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gram staining has been a frequently used staining protocol in microbiology. It is vulnerable to staining artifacts due to, e.g., operator errors and chemical variations. Here, we introduce virtual Gram staining of label-free bacteria using a trained neural network that digitally transforms dark-field images of unstained bacteria into their Gram-stained equivalents matching bright-field image contrast. After a one-time training, the virtual Gram staining model processes an axial stack of dark-field microscopy images of label-free bacteria (never seen before) to rapidly generate Gram staining, bypassing several chemical steps involved in the conventional staining process. We demonstrated the success of virtual Gram staining on label-free bacteria samples containing Escherichia coli and Listeria innocua by quantifying the staining accuracy of the model and comparing the chromatic and morphological features of the virtually stained bacteria against their chemically stained counterparts. This virtual bacterial staining framework bypasses the traditional Gram staining protocol and its challenges, including stain standardization, operator errors, and sensitivity to chemical variations.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] USING DARK-FIELD MICROSCOPY TO SCREEN PERFLUOROCARBONS
    SCHIFTER, CC
    YANKELL, L
    JOURNAL OF DENTAL RESEARCH, 1983, 62 : 279 - 279
  • [32] Label-free deep learning-based species classification of bacteria imaged by phase-contrast microscopy
    Hallstrom, Erik
    Kandavalli, Vinodh
    Ranefall, Petter
    Elf, Johan
    Wahlby, Carolina
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (11)
  • [33] Deep learning enables label-free nanoparticle localization from bright-field microscopy images
    Lv, Zezhong
    Su, Bing
    Xu, Xia
    Li, Wei
    Cui, Wei
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 709
  • [34] Virtual Impactor-Based Label-Free Pollen Detection using Holography and Deep Learning
    Luo, Yi
    Zhang, Yijie
    Liu, Tairan
    Yu, Alan
    Wu, Yichen
    Ozcan, Aydogan
    ACS SENSORS, 2022, 7 (12) : 3885 - 3894
  • [35] Label-free hematology analysis using deep-ultraviolet microscopy
    Ojaghi, Ashkan
    Carrazana, Gabriel
    Caruso, Christina
    Abbas, Asad
    Myers, David R.
    Lam, Wilbur A.
    Robles, Francisco E.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (26) : 14779 - 14789
  • [36] Label-free Identification of Neutropenia Using Deep-Ultraviolet Microscopy
    Ojaghi, Ashkan
    Robles, Francisco E.
    OPTICAL DIAGNOSTICS AND SENSING XIX: TOWARD POINT-OF-CARE DIAGNOSTICS, 2019, 10885
  • [37] Deep-learning Augmented Reflectance Microscopy for Label-free Multiplexed Cytometry
    Cheng, Shiyi
    Fu, Sipei
    Kim, Yumi Mun
    Song, Weiye
    Li, Yunzhe
    Xue, Yujia
    Yi, Ji
    Tian, Lei
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [38] Label-free identification of protein aggregates using deep learning
    Ibrahim K.A.
    Grußmayer K.S.
    Riguet N.
    Feletti L.
    Lashuel H.A.
    Radenovic A.
    Nature Communications, 14 (1)
  • [39] Label-free Rheinberg staining of cells using digital holographic microscopy and spatial light interference microscopy
    Fan, Xin
    Tang, Zhengyuan
    Healy, John J.
    O'Dwyer, Kevin
    Hennelly, Bryan M.
    ADVANCED OPTICAL IMAGING TECHNOLOGIES II, 2019, 11186
  • [40] Comparison of deep learning models for digital H&E staining from unpaired label-free multispectral microscopy images
    Salido, Jesus
    Vallez, Noelia
    Gonzalez-Lopez, Lucia
    Deniz, Oscar
    Bueno, Gloria
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 235