Virtual Gram staining of label-free bacteria using dark-field microscopy and deep learning

被引:0
|
作者
Isil, Cagatay [1 ,2 ,3 ]
Koydemir, Hatice Ceylan [4 ,5 ]
Eryilmaz, Merve [1 ,2 ,3 ]
de Haan, Kevin [1 ,2 ,3 ]
Pillar, Nir [1 ,2 ,3 ]
Mentesoglu, Koray [1 ]
Unal, Aras Firat [1 ,2 ,3 ]
Rivenson, Yair [1 ,2 ,3 ]
Chandrasekaran, Sukantha [6 ]
Garner, Omai B. [6 ]
Ozcan, Aydogan [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles, Elect & Comp Engn Dept, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Bioengn Dept, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA
[4] Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77843 USA
[5] Ctr Remote Hlth Technol & Syst, Texas A&M Engn Expt Stn, College Stn, TX 77843 USA
[6] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
来源
SCIENCE ADVANCES | 2025年 / 11卷 / 02期
关键词
IN-SITU HYBRIDIZATION; LIGHT-SCATTERING; ERROR; IDENTIFICATION; DIAGNOSIS;
D O I
10.1126/sciadv.ads2757
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gram staining has been a frequently used staining protocol in microbiology. It is vulnerable to staining artifacts due to, e.g., operator errors and chemical variations. Here, we introduce virtual Gram staining of label-free bacteria using a trained neural network that digitally transforms dark-field images of unstained bacteria into their Gram-stained equivalents matching bright-field image contrast. After a one-time training, the virtual Gram staining model processes an axial stack of dark-field microscopy images of label-free bacteria (never seen before) to rapidly generate Gram staining, bypassing several chemical steps involved in the conventional staining process. We demonstrated the success of virtual Gram staining on label-free bacteria samples containing Escherichia coli and Listeria innocua by quantifying the staining accuracy of the model and comparing the chromatic and morphological features of the virtually stained bacteria against their chemically stained counterparts. This virtual bacterial staining framework bypasses the traditional Gram staining protocol and its challenges, including stain standardization, operator errors, and sensitivity to chemical variations.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Coherent total internal reflection dark-field microscopy: label-free imaging beyond the diffraction limit
    von Olshausen, Philipp
    Rohrbach, Alexander
    OPTICS LETTERS, 2013, 38 (20) : 4066 - 4069
  • [12] Deep Learning Enables Virtual Histological Staining of Label-free Tissue Sections Using Auto-fluorescence
    Rivenson, Yair
    Wang, Hongda
    de Haan, Kevin
    Wei, Zhensong
    Ozcan, Aydogan
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [13] Label-Free Bioaerosol Sensing Using Mobile Microscopy and Deep Learning
    Wu, Yichen
    Calis, Ayfer
    Luo, Yi
    Chen, Cheng
    Lutton, Maxwell
    Rivenson, Yair
    Lin, Xing
    Koydemir, Hatice Ceylan
    Zhang, Yibo
    Wang, Hongda
    Gorocs, Zoltan
    Ozcan, Aydogan
    ACS PHOTONICS, 2018, 5 (11): : 4617 - 4627
  • [14] Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: A Caenorhabditis elegans study
    Nigamatzyanova, Laysan
    Fakhrullin, Rawil
    ENVIRONMENTAL POLLUTION, 2021, 271 (271)
  • [15] Rapid and label-free histological imaging of unprocessed surgical tissues via dark-field reflectance ultraviolet microscopy
    Ye, Shiwei
    Zou, Junji
    Huang, Chenming
    Xiang, Feng
    Wen, Zonghua
    Wang, Nannan
    Yu, Jia
    He, Yuezh
    Liu, Peng
    Mei, Xin
    li, Hui
    Niu, Lili
    Gong, Peng
    Zheng, Wei
    ISCIENCE, 2023, 26 (01)
  • [16] Label-free Fourier Filtered Dark-field Imaging to Quantify Subcellular Dynamics
    Naser, Mohammad
    Schloss, Rene S.
    Boustany, Nada N.
    BIOPHYSICS, BIOLOGY AND BIOPHOTONICS III: THE CROSSROADS, 2018, 10504
  • [17] VITAL STAINING OF PARASITIC PROTOZOA FOR DARK-FIELD MICROSCOPY
    ROTHSTEIN, N
    DIAMOND, LS
    JOURNAL OF PROTOZOOLOGY, 1959, 6 (03): : 8 - 8
  • [18] DARK-FIELD AGAR MICROSCOPY OF BACTERIA MOTILITY
    ORSKOV, J
    ACTA PATHOLOGICA ET MICROBIOLOGICA SCANDINAVICA, 1950, 27 (05): : 767 - 769
  • [19] Label-Free Nuclear Staining Reconstruction in Quantitative Phase Images Using Deep Learning
    Vicar, Tomas
    Gumulec, Jaromir
    Balvan, Jan
    Hracho, Michal
    Kolar, Radim
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 1, 2019, 68 (01): : 239 - 242
  • [20] Label-Free Imaging of Subwavelength SiO2 Nanoparticle Arrays Using Evanescent Wave-Assisted Dark-Field Microscopy
    Wang, Dong
    Yang, Songlin
    Qi, Mengping
    Cao, Yurong
    Zhang, Mengru
    Ye, Yong-Hong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (13): : 6524 - 6530