Graph states and the variety of principal minors

被引:0
|
作者
Galgano, Vincenzo [1 ]
Holweck, Frederic [2 ,3 ]
机构
[1] Univ Trento, Dipartimento Matemat, Via Sommar 14, I-38123 Trento, Italy
[2] Univ Bourgogne Franche Comte, Lab Interdisciplinaire Carnot de Bourgogne, ICB UTBM, UMR6303 CNRS, F-90010 Belfort, France
[3] Auburn Univ, Dept Math & Stat, Auburn, AL USA
关键词
Graph states; Stabilizer states; Pauli group; Local Clifford group; Local symplectic group; Lagrangian Grassmannian; Symmetric principal minors;
D O I
10.1007/s10231-023-01361-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Quantum Information theory, graph states are quantum states defined by graphs. In this work we exhibit a correspondence between orbits of graph states and orbits in the variety of binary symmetric principal minors, under the action of SL(2, F-2)(xn) (sic) G(n). First we study the orbits of maximal abelian subgroups of the n-fold Pauli group under the action of C-n(loc) (sic) G(n), where C-n(loc) is the n-fold local Clifford group, and we show that this action corresponds to the natural action of SL(2, F-2)(xn) (sic) G(n) on the variety Z(n) subset of P(F-2(n2)) of principal minors of binary symmetric n x n matrices: the crucial step is in translating the action of SL(2, F-2)(xn) into an action of the local symplectic group Sp(2n)(loc)(F-2). We conclude by showing how the former action restricts onto stabilizer groups, stabilizer states and graph states.
引用
收藏
页码:273 / 295
页数:23
相关论文
共 50 条
  • [21] On the Hyperbolicity Constant in Graph Minors
    Walter Carballosa
    José M. Rodríguez
    Omar Rosario
    José M. Sigarreta
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 481 - 503
  • [22] Explicit bounds for graph minors
    Geelen, Jim
    Huynh, Tony
    Richter, R. Bruce
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 132 : 80 - 106
  • [23] New Proofs in Graph Minors
    Wollan, Paul
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2011, 2011, 6907 : 35 - 35
  • [24] Algorithmic graph minors and bidimensionality
    Demaine, Erik D.
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2008, 5018 : 9 - 9
  • [25] PRINCIPAL MINORS AND DIAGONAL SIMILARITY OF MATRICES
    LOEWY, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 78 : 23 - 64
  • [26] Principal minors, Part II: The principal minor assignment problem
    Griffin, Kent
    Tsatsomeros, Michael J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (01) : 125 - 171
  • [27] On cut polytopes and graph minors
    Kaparis, Konstantinos
    Letchford, Adam N.
    Mourtos, Ioannis
    DISCRETE OPTIMIZATION, 2023, 50
  • [28] On the Hyperbolicity Constant in Graph Minors
    Carballosa, Walter
    Rodriguez, Jose M.
    Rosario, Omar
    Sigarreta, Jose M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (02): : 481 - 503
  • [29] Matrices with few nonzero principal minors
    Tian, Yan
    Du, Xiankun
    Li, Yueyue
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (07): : 1362 - 1379
  • [30] Complete graph minors and the graph minor structure theorem
    Joret, Gwenael
    Wood, David R.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2013, 103 (01) : 61 - 74