Matrices with few nonzero principal minors

被引:1
|
作者
Tian, Yan [1 ]
Du, Xiankun [1 ]
Li, Yueyue [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun, Jilin, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2018年 / 66卷 / 07期
基金
中国国家自然科学基金;
关键词
D-nilpotent matrix; Drukowski matrix; permutation-similar; principal minor; quasi-D-nilpotent matrix; 15A21; DIAGONALLY EQUIVALENT;
D O I
10.1080/03081087.2017.1354971
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To generalize D-nilpotent matrices that play a role in study of Drukowski maps, we introduce quasi-D-nilpotent matrices. A matrix A is called quasi-D-nilpotent if there exists a subspace V of diagonal matrices of codimension 1 such that DA is nilpotent for all . It is proved that a quasi-D-nilpotent matrix has few nonzero principal minors. We also determine irreducible quasi-D-nilpotent matrices and the Frobenius normal forms of quasi-D-nilpotent matrices with respect to permutation similarity.
引用
下载
收藏
页码:1362 / 1379
页数:18
相关论文
共 50 条