Understanding interaction mechanism between 8-MnO2 and Li2O2 in nonaqueous lithium-oxygen batteries

被引:2
|
作者
Wang, Yanning [1 ,2 ]
Sun, Xianda [3 ]
Li, Yinshi [2 ]
机构
[1] Beijing Aerosp Technol Res Inst, Beijing 100074, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn, Minist Educ, Xian 710049, Shaanxi, Peoples R China
[3] Shandong Univ, Inst Adv Sci & Technol, Jinan 250061, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonaqueous lithium-oxygen battery; DFT calculation; 8-MnO2; Oxygen evolution reaction; N-DOPED GRAPHENE; EVOLUTION REACTION; REDUCTION REACTION; CATALYTIC-ACTIVITY; LI-O-2; CATHODE; RUO2; EFFICIENT; MNO2; NITROGEN;
D O I
10.1016/j.electacta.2023.142516
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Focusing on the 8-MnO2 acting as catalysts in oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes of the cathode in nonaqueous lithium-oxygen battery, the adsorption models of key in-termediates LixOy on the 8-MnO2 surface and the interface model of 8-MnO2 and Li2O2 crystals are established based on density functional theory (DFT) calculations. In terms to the energy change, the 8-MnO2 shows appropriate adsorption energy to the Li2O2 molecule and crystal, benefiting to the proceeding of ORR and OER processes. As for the electron distribution, the 8-MnO2 is an indirect band gap semi-conductor, the semi -conductive characteristic is preserved after the LixOy adsorption, going against the initial Li2O2 nucleation. During the OER process, the three-phase interface of 8-MnO2/Li2O2/O2 proves to be electronic conductive, guaranteeing the capability of combination between electrons and lithium ions. To further optimize the elec-tronic conductivity of 8-MnO2, the 8-MnO2 doped with Li element, which proves to be a stable structure, is proposed to enhance the catalytic activity.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Li2O2 oxidation: the charging reaction in the aprotic Li-O2 batteries
    Qinghua Cui
    Yelong Zhang
    Shunchao Ma
    Zhangquan Peng
    ScienceBulletin, 2015, 60 (14) : 1227 - 1234
  • [42] Heterostructured NiS2/ZnIn2S4 Realizing Toroid-like Li2O2 Deposition in Lithium-Oxygen Batteries with Low-Donor-Number Solvents
    Hu, Anjun
    Lv, Weiqiang
    Lei, Tianyu
    Chen, Wei
    Hu, Yin
    Shu, Chaozhu
    Wang, Xianfu
    Xue, Lanxin
    Huang, Jianwen
    Du, Xinchuan
    Wang, Hongbo
    Tang, Kai
    Gong, Chuanhui
    Zhu, Jun
    He, Weidong
    Long, Jianping
    Xiong, Jie
    ACS NANO, 2020, 14 (03) : 3490 - 3499
  • [43] Realizing discrete growth of thin Li2O2 sheets on black phosphorus quantum dots-decorated δ-MnO2catalyst for long-life lithium-oxygen cells
    Cheng, Hao
    Xie, Jian
    Cao, Gaoshao
    Lu, Yunhao
    Zheng, Dong
    Jin, Yuan
    Wang, Kangyan
    Zhao, Xinbing
    ENERGY STORAGE MATERIALS, 2019, 23 : 684 - 692
  • [44] RuO2 Monolayer: A Promising Bifunctional Catalytic Material for Nonaqueous Lithium-Oxygen Batteries
    Shi, Le
    Xu, Ao
    Zhao, Tianshou
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (12): : 6356 - 6362
  • [45] The effect of Mn2+additives on the capacity of aqueous Zn/8-MnO2 batteries: Elucidating the Mn2+concentration dependence of the irreversible transformation of 8-MnO2
    Cui, Shuangshuang
    Zhang, Dan
    Gan, Yang
    JOURNAL OF POWER SOURCES, 2023, 579
  • [46] Hierarchical Cr2O3@OPC composites with octahedral shape for rechargeable nonaqueous lithium-oxygen batteries
    Gan, Yongqing
    Lai, Yanqing
    Zhang, Zhian
    Chen, Wei
    Du, Ke
    Li, Jie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 665 : 365 - 372
  • [47] Effect of oxygen adsorbability on the control of Li2O2 growth in Li-O2 batteries: Implications for cathode catalyst design
    Lyu, Zhiyang
    Yang, Lijun
    Luan, Yanping
    Wang, Xiao Renshaw
    Wang, Liangjun
    Hu, Zehua
    Lu, Junpeng
    Xiao, Shuning
    Zhang, Feng
    Wang, Xizhang
    Huo, Fengwei
    Huang, Wei
    Hu, Zheng
    Chen, Wei
    NANO ENERGY, 2017, 36 : 68 - 75
  • [48] Real-Time XRD Studies of Li-O2 Electrochemical Reaction in Nonaqueous Lithium-Oxygen Battery
    Lim, Hyunseob
    Yilmaz, Eda
    Byon, Hye Ryung
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (21): : 3210 - 3215
  • [49] Tunneling and Polaron Charge Transport through Li2O2 in Li-O2 Batteries
    Luntz, A. C.
    Viswanathan, V.
    Voss, J.
    Varley, J. B.
    Norskov, J. K.
    Scheffler, R.
    Speidel, A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (20): : 3494 - 3499
  • [50] Rate-Dependent Morphology of Li2O2 Growth in Li-O2 Batteries
    Horstmann, Birger
    Gallant, Betar
    Mitchell, Robert
    Bessler, Wolfgang G.
    Shao-Horn, Yang
    Bazant, Martin Z.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (24): : 4217 - 4222