Understanding interaction mechanism between 8-MnO2 and Li2O2 in nonaqueous lithium-oxygen batteries

被引:2
|
作者
Wang, Yanning [1 ,2 ]
Sun, Xianda [3 ]
Li, Yinshi [2 ]
机构
[1] Beijing Aerosp Technol Res Inst, Beijing 100074, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn, Minist Educ, Xian 710049, Shaanxi, Peoples R China
[3] Shandong Univ, Inst Adv Sci & Technol, Jinan 250061, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonaqueous lithium-oxygen battery; DFT calculation; 8-MnO2; Oxygen evolution reaction; N-DOPED GRAPHENE; EVOLUTION REACTION; REDUCTION REACTION; CATALYTIC-ACTIVITY; LI-O-2; CATHODE; RUO2; EFFICIENT; MNO2; NITROGEN;
D O I
10.1016/j.electacta.2023.142516
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Focusing on the 8-MnO2 acting as catalysts in oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes of the cathode in nonaqueous lithium-oxygen battery, the adsorption models of key in-termediates LixOy on the 8-MnO2 surface and the interface model of 8-MnO2 and Li2O2 crystals are established based on density functional theory (DFT) calculations. In terms to the energy change, the 8-MnO2 shows appropriate adsorption energy to the Li2O2 molecule and crystal, benefiting to the proceeding of ORR and OER processes. As for the electron distribution, the 8-MnO2 is an indirect band gap semi-conductor, the semi -conductive characteristic is preserved after the LixOy adsorption, going against the initial Li2O2 nucleation. During the OER process, the three-phase interface of 8-MnO2/Li2O2/O2 proves to be electronic conductive, guaranteeing the capability of combination between electrons and lithium ions. To further optimize the elec-tronic conductivity of 8-MnO2, the 8-MnO2 doped with Li element, which proves to be a stable structure, is proposed to enhance the catalytic activity.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Efficient Li2O2 oxidation kinetics of perovskite-type lanthanum chromium-based oxide by promoter interface formation for lithium-oxygen batteries
    Sung, Myeong-Chang
    Lee, Gwang-Hee
    Kim, Dong-Wan
    ENERGY STORAGE MATERIALS, 2023, 60
  • [32] MoSe2@CNT Core-Shell Nanostructures as Grain Promoters Featuring a Direct Li2O2 Formation/Decomposition Catalytic Capability in Lithium-Oxygen Batteries
    He, Biao
    Li, Gaoyang
    Li, Jiajia
    Wang, Jun
    Tong, Hui
    Fan, Yuqi
    Wang, Weiliang
    Sun, Shuhui
    Dang, Feng
    ADVANCED ENERGY MATERIALS, 2021, 11 (18)
  • [33] The thermodynamic properties of lithium peroxide, Li2O2
    Wu, H. Y.
    Zhang, H.
    Cheng, X. L.
    Cai, L. C.
    PHYSICS LETTERS A, 2006, 360 (02) : 352 - 356
  • [34] Li2O2 oxidation: the charging reaction in the aprotic Li-O2 batteries
    Cui, Qinghua
    Zhang, Yelong
    Ma, Shunchao
    Peng, Zhangquan
    SCIENCE BULLETIN, 2015, 60 (14) : 1227 - 1234
  • [35] The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices
    Daniela M.Josepetti
    Bianca P.Sousa
    Simone A.J.Rodrigues
    Renato G.Freitas
    Gustavo Doubek
    Journal of Energy Chemistry, 2024, 88 (01) : 223 - 231
  • [36] Nanocomposite of Fe2O3@C@MnO2 as an Efficient Cathode Catalyst for Rechargeable Lithium-Oxygen Batteries
    Hu, Xiaofei
    Cheng, Fangyi
    Zhang, Ning
    Han, Xiaopeng
    Chen, Jun
    SMALL, 2015, 11 (41) : 5545 - 5550
  • [37] A highly efficient Li2O2 oxidation system in Li-O2 batteries
    Hase, Yoko
    Seki, Juntaro
    Shiga, Tohru
    Mizuno, Fuminori
    Nishikoori, Hidetaka
    Iba, Hideki
    Takechi, Kensuke
    CHEMICAL COMMUNICATIONS, 2016, 52 (82) : 12151 - 12154
  • [38] Perfluorinated organics regulating Li2O2 formation and improving stability for Li-oxygen batteries
    Wang, Yuling
    Bai, Fan
    Wang, Aiping
    Cui, Zhonghui
    Wang, Da
    Shi, Siqi
    Zhang, Tao
    CHEMICAL COMMUNICATIONS, 2021, 57 (24) : 3030 - 3033
  • [39] The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices
    Josepetti, Daniela M.
    Sousa, Bianca P.
    Rodrigues, Simone A. J.
    Freitas, Renato G.
    Doubek, Gustavo
    JOURNAL OF ENERGY CHEMISTRY, 2024, 88 : 223 - 231
  • [40] High-Performance Lithium-Oxygen Batteries Using a Urea-Based Electrolyte with Kinetically Favorable One-Electron Li2O2 Oxidation Pathways
    Sun, Zongqiang
    Lin, Xiaodong
    Wang, Chutao
    Hu, Ajuan
    Hou, Qing
    Tan, Yanyan
    Dou, Wenjie
    Yuan, Ruming
    Zheng, Mingsen
    Dong, Quanfeng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (36)