A Novel Semi-Supervised Long-Tailed Learning Framework With Spatial Neighborhood Information for Hyperspectral Image Classification

被引:10
|
作者
Feng, Yining [1 ]
Song, Ruoxi [2 ]
Ni, Weihan [3 ]
Zhu, Junheng [3 ]
Wang, Xianghai [1 ,3 ]
机构
[1] Liaoning Normal Univ, Sch Geog, Dalian 116029, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100101, Peoples R China
[3] Liaoning Normal Univ, Sch Comp & Informat Technol, Dalian 116029, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Training; Convolutional neural networks; Image classification; Tail; Semisupervised learning; Feature extraction; Task analysis; Hyperspectral (HS) image; imbalanced sample classification; long-tailed distributions; semi-supervised learning; NETWORK;
D O I
10.1109/LGRS.2023.3241340
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep learning technologies have been successfully applied to hyperspectral (HS) image classification with remarkable performance. However, compared with traditional machine learning methods, neural networks usually need more data. In remote sensing (RS) research, obtaining a large number of labeled HS data is very difficult and expensive work. Simultaneously, the distribution of feature information is bound to be unbalanced, and tends to conform to the long tail. At present, the neighborhood information of unlabeled samples is usually ignored in HS image classification tasks based on semi-supervised learning. In this letter, we propose a new semi-supervised long-tail learning framework based on spatial neighborhood information (SLN-SNI), which can complete the HS image classification task under unbalanced small sample data. Specifically, a new semi-supervised learning strategy is proposed. On this basis, a new method to determine the label of unlabeled samples based on spatial neighborhood information (SNI) is proposed. The coarse classification results divided into three situations are judged again, and the accuracy of pseudo labels is improved. The performance of the proposed method is tested on three public HS image datasets. Compared with the current advanced methods have achieved a certain improvement.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Flexible Distribution Alignment: Towards Long-Tailed Semi-supervised Learning with Proper Calibration
    Aimar, Emanuel Sanchez
    Helgesen, Nathaniel
    Xu, Yonghao
    Kuhlmann, Marco
    Felsberg, Michael
    COMPUTER VISION - ECCV 2024, PT LIV, 2025, 15112 : 307 - 327
  • [32] Semi-supervised hierarchical Transformer for hyperspectral Image classification
    He, Ziping
    Zhu, Qianglin
    Xia, Kewen
    Ghamisi, Pedram
    Zu, Baokai
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (01) : 21 - 50
  • [33] Semi-Supervised Hyperspectral Image Classification with Multiscale Kernels
    Cui, Li
    Liu, Lu
    Chen, Di-Rong
    INTERNATIONAL CONFERENCE ON CIVIL, MECHANICAL AND MATERIAL ENGINEERING (ICCMME 2018), 2018, 1973
  • [34] Spectral-Spatial Classification of Hyperspectral Images with Semi-Supervised Graph Learning
    Luo, Renbo
    Liao, Wenzhi
    Zhang, Hongyan
    Pi, Youguo
    Philips, Wilfried
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXII, 2016, 10004
  • [35] Semi-Supervised Learning via Convolutional Neural Network for Hyperspectral Image Classification
    Ling, Zhigang
    Li, Xiuxin
    Zou, Wen
    Guo, Siyu
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1900 - 1905
  • [36] Semi-Supervised Deep Learning Using Pseudo Labels for Hyperspectral Image Classification
    Wu, Hao
    Prasad, Saurabh
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1259 - 1270
  • [37] SEMI-SUPERVISED LEARNING WITH GRAPHS: COVARIANCE BASED SUPERPIXELS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Sellars, Philip
    Aviles-Rivero, Angelica I.
    Papadakis, Nicolas
    Coomes, David
    Faul, Anita
    Schonlieb, Carola-Bibiane
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 592 - 595
  • [38] SSML: Semi-supervised metric learning with hard samples for hyperspectral image classification
    Wu, Erhui
    Zhang, Jinhao
    Wang, Yanmei
    Luo, Weiran
    Niu, Wujun
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (04)
  • [39] Three Heads Are Better than One: Complementary Experts for Long-Tailed Semi-supervised Learning
    Ma, Chengcheng
    Elezi, Ismail
    Deng, Jiankang
    Dong, Weiming
    Xu, Changsheng
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 13, 2024, : 14229 - 14237
  • [40] Spatial-Spectral Semi-Supervised Local Discriminant Analysis for Hyperspectral Image Classification
    Hou B.
    Yao M.
    Wang R.
    Zhang F.
    Dai D.
    Guangxue Xuebao/Acta Optica Sinica, 2017, 37 (07):