SSML: Semi-supervised metric learning with hard samples for hyperspectral image classification

被引:0
|
作者
Wu, Erhui [1 ]
Zhang, Jinhao [2 ]
Wang, Yanmei [1 ]
Luo, Weiran [3 ]
Niu, Wujun [4 ]
机构
[1] North China Univ Water Resources & Elect Power, Coll Water Resources, Zhengzhou 450046, Peoples R China
[2] Henan Univ, Int Business Sch, Kaifeng 475000, Peoples R China
[3] Henan Univ, Coll Geog & Environm Sci, Kaifeng 475000, Peoples R China
[4] Lingshi Cty Emergency Management Bur, Jinzhong 031308, Peoples R China
关键词
Deep learning; Hyperspectral image (HSI) classification; Semi-supervised learning; Metric learning; Pseudo-labels; NETWORK;
D O I
10.1016/j.jrras.2024.101165
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep learning is widely used in hyperspectral image (HSI) classification due to its powerful learning capabilities. However, its excellent performance typically requires a large number of samples, which can be time-consuming and labor-intensive to produce. The limitation of available samples greatly constrains the model's generalization performance. To alleviate the sample pressure, we propose a semi-supervised metric learning method for HSI classification that focuses on hard samples and can obtain reliable pseudo-labels through multiscale prediction. Additionally, we employ a hard sample learning strategy for network training, which concentrates on enhancing network discrimination by adaptively optimizing intra-class and inter-class distances. Performance tests on three public datasets indicate that the proposed method surpasses other state-of-the-art methods across multiple validation metrics.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Semi-supervised Metric Learning for Image Classification
    Hu, Jiwei
    Sun, ChenSheng
    Kin Man Lam
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING-PCM 2010, PT II, 2010, 6298 : 728 - 735
  • [2] Semi-supervised deep learning for hyperspectral image classification
    Kang, Xudong
    Zhuo, Binbin
    Duan, Puhong
    REMOTE SENSING LETTERS, 2019, 10 (04) : 353 - 362
  • [3] Semi-supervised feature learning for hyperspectral image classification
    Zhang, Pengfei
    Cao, Liujuan
    Wang, Cheng
    Li, Jonathan
    2ND ISPRS INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING (CVRS 2015), 2016, 9901
  • [4] Combining Semi-Supervised and Active Learning for Hyperspectral Image Classification
    Li, Mingzhi
    Wang, Rui
    Tang, Ke
    2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2013, : 89 - 94
  • [5] Unified active and semi-supervised learning for hyperspectral image classification
    Wang, Zengmao
    Du, Bo
    GEOINFORMATICA, 2023, 27 (01) : 23 - 38
  • [6] SEMI-SUPERVISED LEARNING BY DOMAIN ADAPTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Deshpande, Shailesh S.
    Banolia, Chaman
    Balamuralidhar, P.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6009 - 6012
  • [7] SEMI-SUPERVISED ACTIVE LEARNING FOR URBAN HYPERSPECTRAL IMAGE CLASSIFICATION
    Dopido, Inmaculada
    Li, Jun
    Plaza, Antonio
    Bioucas-Dias, Jose M.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1586 - 1589
  • [8] Unified active and semi-supervised learning for hyperspectral image classification
    Zengmao Wang
    Bo Du
    GeoInformatica, 2023, 27 : 23 - 38
  • [9] Semi-supervised bundle manifold learning for hyperspectral image classification
    Li, Zhi-Min
    Zhang, Jie
    Huang, Hong
    Jiang, Tao
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2015, 23 (05): : 1434 - 1442
  • [10] A novel semi-supervised learning framework for hyperspectral image classification
    Ye, Zhijing
    Li, Hong
    Song, Yalong
    Wang, Jianzhong
    Benediktsson, Jon Atli
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (02)