Recent advances in cementless ultra-high-performance concrete using alkali-activated materials and industrial byproducts: A review

被引:20
|
作者
Yoo, Doo-Yeol [1 ]
Banthia, Nemkumar [2 ]
You, Ilhwan [3 ]
Lee, Seung-Jung [4 ]
机构
[1] Yonsei Univ, Dept Architecture & Architectural Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Univ British Columbia, Dept Civil Engn, 6250 Appl Sci Lane, Vancouver, BC V6T 1Z4, Canada
[3] Jeonbuk Natl Univ, Dept Environm Engn, 567 Baekje Daero, Jeonju 54896, South Korea
[4] Incheon Natl Univ, Dept Civil & Environm Engn, 119 Acad Ro, Incheon 22012, South Korea
来源
CEMENT & CONCRETE COMPOSITES | 2024年 / 148卷
基金
新加坡国家研究基金会;
关键词
Cementless ultra -high-performance concrete; Alkali activated materials; Industrial byproducts; Fresh and hardened properties; Durability; Tensile characteristics; FIBER-REINFORCED CONCRETE; MECHANICAL-PROPERTIES; GEOPOLYMER CONCRETE; MIX DESIGN; STRENGTH; SLAG; PARAMETERS; HYDRATION; BEHAVIOR; WASTE;
D O I
10.1016/j.cemconcomp.2024.105470
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper offers a comprehensive review of recent advancements in cementless ultra -high-performance concrete (UHPC) that employs alkali -activated materials and industrial byproducts. Initially, the raw materials used in fabricating cementless UHPC, focusing on their physical and chemical attributes, are summarized and analyzed. Subsequently, the impact of various ingredients, their combinations, the water -to -binder (W/B) ratio, alkali activators, and fiber reinforcement on the properties of both fresh and hardened cementless UHPC are investigated. The durability of cementless UHPC is also compared with its conventional counterpart based on ordinary Portland cement. The environmental benefits, like reductions in CO2 emissions and energy use due to the absence of cement, are highlighted. With the adoption of alkali -activated materials instead of regular cement, CO2 emissions from UHPC production can be curtailed by roughly 70-75 %. Newly introduced strain -hardening cementless UHPC based on alkali -activated materials is discussed, with a focus on its tensile characteristics influenced by several factors such as fiber type and the sand -to -binder ratio. Lastly, the innovative approach of using hydrated lime and calcium oxide in cementless UHPC is examined, bypassing traditional alkali activating solutions.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Performance of Alkali-Activated Materials Using Precursors with High Impurity Contents
    Mirmoghtadaei, Reza
    Shen, Lin
    Jehn, Ian
    Wang, Baomin
    SUSTAINABILITY, 2023, 15 (04)
  • [22] Hybrid reinforcement of steel-polyethylene fibers in cementless ultra-high performance alkali-activated concrete with various silica sand dosages
    Kim, Gi Woong
    Oh, Taekgeun
    Lee, Seung Kyun
    Lee, Seung Won
    Banthia, Nemkumar
    Yu, Eunjong
    Yoo, Doo-Yeol
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 394
  • [23] Development of cementless alkali-activated ultra-high performance concrete under various steam curing regimes: Mechanical properties, permeability, and microstructure
    Qian, Yunfeng
    Yang, Dingyi
    Zhao, Jian
    Mao, Xiang
    Ren, Guosheng
    Cao, Zhonglu
    JOURNAL OF BUILDING ENGINEERING, 2025, 101
  • [24] A review on alkali-activated binders: Materials composition and fresh properties of concrete
    Elahi, Md Manjur A.
    Hossain, Md Maruf
    Karim, Md Rezaul
    Zain, Muhammad Fauzi Mohd
    Shearer, Christopher
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 260
  • [25] Thermal Properties of Ultra-High-Performance Concrete: A Review
    Rady, Mahmoud
    Soliman, Ahmed
    PROCEEDINGS OF THE CANADIAN SOCIETY FOR CIVIL ENGINEERING ANNUAL CONFERENCE 2023, VOL 7, CSCE 2023, 2024, 501 : 243 - 251
  • [26] Nanomaterials in ultra-high-performance concrete (UHPC)-A review
    Yoo, Doo-Yeol
    Oh, Taekgeun
    Banthia, Nemkumar
    CEMENT & CONCRETE COMPOSITES, 2022, 134
  • [27] Durability of alkali-activated materials in aggressive environments: A review on recent studies
    Zhang, Jian
    Shi, Caijun
    Zhang, Zuhua
    Ou, Zhihua
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 152 : 598 - 613
  • [28] Alkali-activated, cementless, controlled low-strength materials (CLSM) utilizing industrial by-products
    Lee, N. K.
    Kim, H. K.
    Park, I. S.
    Lee, H. K.
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 49 : 738 - 746
  • [29] The Influence of Materials on the Mechanical Properties of Ultra-High-Performance Concrete (UHPC): A Literature Review
    da Silva, Mariana Lage
    Prado, Lisiane Pereira
    Felix, Emerson Felipe
    de Sousa, Alex Micael Dantas
    Aquino, Davi Peretta
    MATERIALS, 2024, 17 (08)
  • [30] Durability characteristics and quantification of ultra-high strength alkali-activated concrete
    Cai, Rongjin
    Tian, Zushi
    Ye, Hailong
    CEMENT & CONCRETE COMPOSITES, 2022, 134