Hybrid reinforcement of steel-polyethylene fibers in cementless ultra-high performance alkali-activated concrete with various silica sand dosages

被引:12
|
作者
Kim, Gi Woong [1 ]
Oh, Taekgeun [1 ]
Lee, Seung Kyun [1 ]
Lee, Seung Won [1 ]
Banthia, Nemkumar [2 ]
Yu, Eunjong [1 ]
Yoo, Doo-Yeol [3 ]
机构
[1] Hanyang Univ, Dept Architectural Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
[2] Univ British Columbia, Dept Civil Engn, 6250 Appl Sci Lane, Vancouver, BC V6T 1Z4, Canada
[3] Yonsei Univ, Dept Architecture & Architectural Engn, 50 Yonsei Ro, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
Ultra-high performance alkali-activated con-; crete; Hybrid fiber reinforcement; Fine aggregate-to-binder ratio; Mechanical properties; Pseudo strain-hardening index; STRAIN-HARDENING BEHAVIOR; MECHANICAL PERFORMANCE; TENSILE BEHAVIOR; CO2; EMISSION; SLAG; MICROSTRUCTURE; RESISTANCE; STRENGTH; GEOMETRY; AMBIENT;
D O I
10.1016/j.conbuildmat.2023.132213
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The effects of steel and polyethylene (PE) fiber hybrid reinforcement on the mechanical performance of cementless ultra-high performance alkali-activated concrete (UHP-AAC) containing an industrial by-product and various amounts of silica sand were investigated. Replacing steel fibers with PE fibers reduced the compressive and tensile strengths, with the best performance was observed in the hybrid specimens with a medium-grade fine aggregate-to-binder (FA/B) ratio. Increasing the PE fiber replacement ratio and decreasing the FA/B ratio increased the occurrence of multiple microcracks. The FA/B ratio had a greater effect on the variation in the pseudo-strain hardening indices than the fiber replacement ratio. The highest complementary energy, 1,762.5 J/ m2, was obtained for PE fiber-reinforced UHP-AAC at an FA/B ratio of 0.16, while the lowest value, 309.6 J/m2, was obtained for steel-fiber-reinforced UHP-AAC at the same FA/B ratio. In conclusion, the hybrid reinforcement of UHP-AAC can be optimized by considering the FA/B ratio and fiber replacement ratio.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Development of cementless alkali-activated ultra-high performance concrete under various steam curing regimes: Mechanical properties, permeability, and microstructure
    Qian, Yunfeng
    Yang, Dingyi
    Zhao, Jian
    Mao, Xiang
    Ren, Guosheng
    Cao, Zhonglu
    JOURNAL OF BUILDING ENGINEERING, 2025, 101
  • [2] Strain-hardening ultra-high performance concrete (UHPC) with hybrid steel and ultra-high molecular weight polyethylene fibers
    Chu, S. H.
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 438
  • [3] Performance of an alkali-activated slag concrete reinforced with steel fibers
    Bernal, Susan
    De Gutierrez, Ruby
    Delvasto, Silvio
    Rodriguez, Erich
    CONSTRUCTION AND BUILDING MATERIALS, 2010, 24 (02) : 208 - 214
  • [4] Influence of silica fume on properties of fresh and hardened ultra-high performance concrete based on alkali-activated slag
    Wetzel, A.
    Middendorf, B.
    CEMENT & CONCRETE COMPOSITES, 2019, 100 : 53 - 59
  • [5] Enhanced tensile performance of ultra-high-performance alkali-activated concrete using surface roughened steel fibers
    Kim, Gi Woong
    Oh, Taekgeun
    Chun, Booki
    Lee, Seung Won
    Hung, Chung-Chan
    Yoo, Doo-Yeol
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 409
  • [6] Effect of retarders on the properties of ultra-high strength alkali-activated concrete
    He, Haiyu
    Zhi, Xudong
    Fan, Feng
    Ye, Hailong
    Zhang, Rong
    Song, Yuhuan
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 411
  • [7] Durability characteristics and quantification of ultra-high strength alkali-activated concrete
    Cai, Rongjin
    Tian, Zushi
    Ye, Hailong
    CEMENT & CONCRETE COMPOSITES, 2022, 134
  • [8] Clinkerless ultra-high strength concrete based on alkali-activated slag at high temperatures
    Cai, Rongjin
    Ye, Hailong
    CEMENT AND CONCRETE RESEARCH, 2021, 145
  • [9] High energy absorbent ultra-high-performance concrete with hybrid steel and polyethylene fibers
    Yoo, Doo-Yeol
    Kim, Min-Jae
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 209 : 354 - 363
  • [10] Recent advances in cementless ultra-high-performance concrete using alkali-activated materials and industrial byproducts: A review
    Yoo, Doo-Yeol
    Banthia, Nemkumar
    You, Ilhwan
    Lee, Seung-Jung
    CEMENT & CONCRETE COMPOSITES, 2024, 148