A comprehensive parametric study on thermal aspects of vanadium redox flow batteries

被引:0
|
作者
Yang, Tien-Fu [1 ]
Zheng, Le-Zheu [2 ,3 ]
Lin, Cong-You [4 ]
Teng, Li-Tao [5 ]
Yan, Wei-Mon [2 ,3 ]
Rashidi, Saman [6 ]
机构
[1] Natl Chin Yi Univ Technol, Dept Refrigerat Air Conditioning & Energy Engn, Taichung 41170, Taiwan
[2] Natl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 10608, Taiwan
[3] Natl Taipei Univ Technol, Res Ctr Energy Conservat New Generat Residential C, Taipei 10608, Taiwan
[4] Aurora Borealis Technol Co Ltd, Tainan 71150, Taiwan
[5] Ind Technol Res Inst, Green Energy & Environm Res Labs, Hsinchu 310, Taiwan
[6] Semnan Univ, Fac New Sci & Technol, Dept Energy, Semnan, Iran
关键词
Vanadium redox flow battery; Thermal model; State of charge; Temperature distribution; Energy efficiency; MATHEMATICAL-MODEL; PERFORMANCE; TEMPERATURE; TRANSIENT; WATER;
D O I
10.1007/s10973-023-12692-2
中图分类号
O414.1 [热力学];
学科分类号
摘要
Vanadium redox flow batteries are recognized as well-developed flow batteries. The flow rate and current density of the electrolyte are important control mechanisms in the operation of this type of battery, which affect its energy power. The thermal behavior and performance of this battery during charging and discharging modes are also important. As a consequence, the aim of this investigation is to deeply study the impact of different working parameters on the temperature distribution and state of charge of these batteries. To achieve these goals, a single battery thermal model is established. The effects of various operating parameters, including working temperature, molar concentration, flow rate, and current density of the electrolyte, on the thermal behavior, state of charge, and performance of this type of battery are investigated. It is observed that the temperature distribution of high flow rate (90 mL min-1) is more uniform than that of other flow rates (30 and 60 mL min-1). In the end of the discharging mode, the battery voltage performance increases with the increase in the electrolyte flow rate. The temperature distribution of high current density (80 mA cm-2) is relatively uneven, and the local heating is produced at the battery outlet. The end time in the charging and discharging modes for the case of the high current density (80 mA cm-2) is faster than other current densities (20 and 40 mA cm-2).
引用
收藏
页码:14081 / 14096
页数:16
相关论文
共 50 条
  • [31] Study of ABPBI membrane as an alternative separator for vanadium redox flow batteries
    Bhattacharyya, Rama
    Nayak, Ratikanta
    Ghosh, Prakash C.
    ENERGY STORAGE, 2020, 2 (01)
  • [32] Study on Channel Geometry of All-Vanadium Redox Flow Batteries
    Al-Yasiri, Mohammed
    Park, Jonghyun
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (09) : A1970 - A1982
  • [33] Numerical and experimental study of the flow-by cell for Vanadium Redox Batteries
    Pugach, M.
    Kondratenko, M.
    Briola, S.
    Bischi, A.
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 3667 - 3674
  • [34] A comparative study of Nafion series membranes for vanadium redox flow batteries
    Jiang, Bo
    Wu, Lantao
    Yu, Lihong
    Qiu, Xinping
    Xi, Jingyu
    JOURNAL OF MEMBRANE SCIENCE, 2016, 510 : 18 - 26
  • [35] Numerical study on serpentine design flow channel configurations for vanadium redox flow batteries
    Ali, Ehtesham
    Kwon, Hwabhin
    Kim, Jungmyung
    Park, Heesung
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [36] Dynamic flow rate control for vanadium redox flow batteries
    Fu, Jiahui
    Wang, Tao
    Wang, Xinhao
    Sun, Jie
    Zheng, Menglian
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105
  • [37] First-principles study of redox reactions in all-vanadium redox flow batteries
    Jiang, Zhen
    Klyukin, Konstantin
    Alexandrov, Vitaly
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [38] A 2D Thermal Model of Stacked Vanadium Redox Flow Batteries for Efficient Thermal Management
    Shao, Meirong
    Zhang, Baowen
    ENERGY TECHNOLOGY, 2024, 12 (02)
  • [39] Redox-targeted catalysis for vanadium redox-flow batteries
    Zhang, Feifei
    Huang, Songpeng
    Wang, Xun
    Jia, Chuankun
    Du, Yonghua
    Wang, Qing
    NANO ENERGY, 2018, 52 : 292 - 299
  • [40] An analytical model for parametric study on serpentine and interdigitated flow fields in redox flow batteries
    Sun, Jie
    Luo, Yansong
    Zheng, Menglian
    Yu, Zitao
    JOURNAL OF ENERGY STORAGE, 2023, 71