A comprehensive parametric study on thermal aspects of vanadium redox flow batteries

被引:0
|
作者
Yang, Tien-Fu [1 ]
Zheng, Le-Zheu [2 ,3 ]
Lin, Cong-You [4 ]
Teng, Li-Tao [5 ]
Yan, Wei-Mon [2 ,3 ]
Rashidi, Saman [6 ]
机构
[1] Natl Chin Yi Univ Technol, Dept Refrigerat Air Conditioning & Energy Engn, Taichung 41170, Taiwan
[2] Natl Taipei Univ Technol, Dept Energy & Refrigerating Air Conditioning Engn, Taipei 10608, Taiwan
[3] Natl Taipei Univ Technol, Res Ctr Energy Conservat New Generat Residential C, Taipei 10608, Taiwan
[4] Aurora Borealis Technol Co Ltd, Tainan 71150, Taiwan
[5] Ind Technol Res Inst, Green Energy & Environm Res Labs, Hsinchu 310, Taiwan
[6] Semnan Univ, Fac New Sci & Technol, Dept Energy, Semnan, Iran
关键词
Vanadium redox flow battery; Thermal model; State of charge; Temperature distribution; Energy efficiency; MATHEMATICAL-MODEL; PERFORMANCE; TEMPERATURE; TRANSIENT; WATER;
D O I
10.1007/s10973-023-12692-2
中图分类号
O414.1 [热力学];
学科分类号
摘要
Vanadium redox flow batteries are recognized as well-developed flow batteries. The flow rate and current density of the electrolyte are important control mechanisms in the operation of this type of battery, which affect its energy power. The thermal behavior and performance of this battery during charging and discharging modes are also important. As a consequence, the aim of this investigation is to deeply study the impact of different working parameters on the temperature distribution and state of charge of these batteries. To achieve these goals, a single battery thermal model is established. The effects of various operating parameters, including working temperature, molar concentration, flow rate, and current density of the electrolyte, on the thermal behavior, state of charge, and performance of this type of battery are investigated. It is observed that the temperature distribution of high flow rate (90 mL min-1) is more uniform than that of other flow rates (30 and 60 mL min-1). In the end of the discharging mode, the battery voltage performance increases with the increase in the electrolyte flow rate. The temperature distribution of high current density (80 mA cm-2) is relatively uneven, and the local heating is produced at the battery outlet. The end time in the charging and discharging modes for the case of the high current density (80 mA cm-2) is faster than other current densities (20 and 40 mA cm-2).
引用
收藏
页码:14081 / 14096
页数:16
相关论文
共 50 条
  • [21] Membranes for all vanadium redox flow batteries
    Tempelman, C. H. L.
    Jacobs, J. F.
    Balzer, R. M.
    Degirmenci, V.
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [22] The numerical simulation of vanadium RedOx flow batteries
    I. M. Bayanov
    R. Vanhaelst
    Journal of Mathematical Chemistry, 2011, 49 : 2013 - 2031
  • [23] Electrocatalysis at Electrodes for Vanadium Redox Flow Batteries
    Wu, Yuping
    Holze, Rudolf
    BATTERIES-BASEL, 2018, 4 (03):
  • [24] A Numerical Simulation of Vanadium Redox Flow Batteries
    Hasannasab, P.
    Ranjbar, A. A.
    Shakeri, M.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2019, 32 (01): : 153 - 161
  • [25] Vanadium redox flow batteries: a technology review
    Cunha, Alvaro
    Martins, Jorge
    Rodrigues, Nuno
    Brito, F. P.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (07) : 889 - 918
  • [26] Vanadium Redox Flow Batteries: Asymptotics and Numerics
    Vynnycky, Michael
    Assuncao, Milton
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI, 2022, 39 : 365 - 371
  • [27] Nanostructured membranes for vanadium redox flow batteries
    Choi, So-Won
    Cha, Sang-Ho
    Kim, Tae-Ho
    Nanoscience and Nanotechnology - Asia, 2015, 5 (02): : 109 - 129
  • [28] Thermal dynamics assessment of vanadium redox flow batteries and thermal management by active temperature control
    Wang, Hao
    Soong, Wen L.
    Pourmousavi, S. Ali
    Zhang, Xinan
    Ertugrul, Nesimi
    Xiong, Bingyu
    JOURNAL OF POWER SOURCES, 2023, 570
  • [29] Design and optimization of a novel flow field structure to improve the comprehensive performance of vanadium redox flow batteries
    Huang, Zebo
    Liu, Yilin
    Xie, Xing
    Wu, Jianjun
    Deng, Yusen
    Xiong, Zhonggang
    Wu, Longxing
    Li, Zhen
    Huang, Qian
    Liu, Yangsheng
    Luo, Yi
    Zhang, Cheng
    JOURNAL OF POWER SOURCES, 2025, 640
  • [30] Parametric optimisation using data model to improve the energy efficiency of vanadium redox flow batteries
    Sankaralingam, Ram Kishore
    Seshadri, Satyanarayanan
    Sunarso, Jaka
    JOURNAL OF ENERGY STORAGE, 2023, 64