On the basis of the Hamilton-Jacobi-Bellman equation in economic dynamics

被引:1
|
作者
Hosoya, Yuhki [1 ]
机构
[1] Chuo Univ, Fac Econ, 742-1 Higashinakano, Hachioji, Tokyo 1920393, Japan
关键词
Capital accumulation model; Hamilton-Jacobi-Bellman equation; Classical solution; Linear technology; Nonlinear technology; Subdifferential calculus; INFINITE-HORIZON PROBLEMS; UNIQUENESS;
D O I
10.1016/j.physd.2023.133684
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the classical Ramsey-Cass-Koopmans capital accumulation model and present three examples in which the Hamilton-Jacobi-Bellman (HJB) equation is neither necessary nor sufficient for a function to be the value function. Next, we present assumptions under which the HJB equation becomes a necessary and sufficient condition for a function to be the value function, and using this result, we propose a new method for solving the original problem using the solution to the HJB equation. Our assumptions are so mild that many macroeconomic growth models satisfy them. Therefore, our results ensure that the solution to the HJB equation is rigorously the value function in many macroeconomic models, and present a new solving method for these models.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Hamilton-Jacobi-Bellman Equation and Feedback Synthesis for Impulsive Control
    Fraga, Sergio Loureiro
    Pereira, Fernando Lobo
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (01) : 244 - 249
  • [32] THE HAMILTON-JACOBI-BELLMAN EQUATION FOR TIME-OPTIMAL CONTROL
    EVANS, LC
    JAMES, MR
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (06) : 1477 - 1489
  • [33] Viscous Solutions of the Hamilton-Jacobi-Bellman Equation on Time Scales
    Danilov, V. Ya.
    Lavrova, O. E.
    Stanzhyts'kyi, O. M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2017, 69 (07) : 1085 - 1106
  • [34] An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation
    Lars Grüne
    Numerische Mathematik, 1997, 75 : 319 - 337
  • [35] Bifurcation points of the generalized solution of the Hamilton-Jacobi-Bellman equation
    Rodin, A. S.
    Shagalova, L. G.
    IFAC PAPERSONLINE, 2018, 51 (32): : 866 - 870
  • [36] Optimal obstacle avoidance based on the Hamilton-Jacobi-Bellman equation
    Sundar, S
    Shiller, Z
    IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1997, 13 (02): : 305 - 310
  • [37] An adaptive domain decomposition method for the Hamilton-Jacobi-Bellman equation
    Alwardi, H.
    Wang, S.
    Jennings, L. S.
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (04) : 1361 - 1373
  • [38] An Adaptive Cross Approximation Method for the Hamilton-Jacobi-Bellman Equation
    Wang, Zhong
    Li, Yan
    IFAC PAPERSONLINE, 2017, 50 (01): : 6289 - 6294
  • [39] A New Analytical Method for Solving Hamilton-Jacobi-Bellman Equation
    Matinfar, M.
    Saeidy, M.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2014, 11 (04): : 252 - 263
  • [40] Ergodic problem for the Hamilton-Jacobi-Bellman equation. II
    CEREMADE, URA CNRS 749, Université Paris-Dauphine, Place de Lattre de Tassigny, 75775 Paris Cedex 16, France
    Anna Inst Henri Poincare Annal Anal Non Lineaire, 1 (1-24):