An adaptive domain decomposition method for the Hamilton-Jacobi-Bellman equation

被引:5
|
作者
Alwardi, H. [1 ]
Wang, S. [2 ]
Jennings, L. S. [2 ]
机构
[1] Nizwa Coll Appl Sci, Dept Math, Nizwa 611, Oman
[2] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
关键词
HJB equation; Optimal feedback and stochastic control; Domain decomposition; Parallel computations; Adaptive refinement; Least-squares collocation; Radial basis functions; RADIAL BASIS FUNCTIONS; FINITE-VOLUME METHOD; NUMERICAL-SOLUTION;
D O I
10.1007/s10898-012-9850-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose an efficient algorithm for a Hamilton-Jacobi-Bellman equation governing a class of optimal feedback control and stochastic control problems. This algorithm is based on a non-overlapping domain decomposition method and an adaptive least-squares collocation radial basis function discretization with a novel matrix inversion technique. To demonstrate the efficiency of this method, numerical experiments on test problems with up to three states and two control variables have been performed. The numerical results show that the proposed algorithm is highly parallelizable and its computational cost decreases exponentially as the number of sub-domains increases.
引用
收藏
页码:1361 / 1373
页数:13
相关论文
共 50 条
  • [1] An adaptive domain decomposition method for the Hamilton–Jacobi–Bellman equation
    H. Alwardi
    S. Wang
    L. S. Jennings
    [J]. Journal of Global Optimization, 2013, 56 : 1361 - 1373
  • [2] Modified domain decomposition method for Hamilton-Jacobi-Bellman equations
    Guang-hua Chen
    Guang-ming Chen
    Zhi-hua Dai
    [J]. Applied Mathematics and Mechanics, 2010, 31 : 1585 - 1592
  • [3] Modified domain decomposition method for Hamilton-Jacobi-Bellman equations
    陈光华
    陈光明
    戴智华
    [J]. Applied Mathematics and Mechanics(English Edition), 2010, 31 (12) : 1585 - 1592
  • [4] Modified domain decomposition method for Hamilton-Jacobi-Bellman equations
    Chen, Guang-hua
    Chen, Guang-ming
    Dai, Zhi-hua
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (12) : 1585 - 1592
  • [5] An Adaptive Cross Approximation Method for the Hamilton-Jacobi-Bellman Equation
    Wang, Zhong
    Li, Yan
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 6289 - 6294
  • [6] Solving the Hamilton-Jacobi-Bellman equation using Adomian decomposition method
    Fakharian, A.
    Beheshti, M. T. Hamidi
    Davari, A.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (12) : 2769 - 2785
  • [7] A GENERALIZED HAMILTON-JACOBI-BELLMAN EQUATION
    PENG, SG
    [J]. LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1991, 159 : 126 - 134
  • [8] On the Hamilton-Jacobi-Bellman Equation by the Homotopy Perturbation Method
    Atangana, Abdon
    Ahmed, Aden
    Noutchie, Suares Clovis Oukouomi
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [9] DOMAIN DECOMPOSITION ALGORITHMS FOR SOLVING HAMILTON-JACOBI-BELLMAN EQUATIONS
    SUN, M
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1993, 14 (1-2) : 145 - 166
  • [10] ON THE GEOMETRY OF THE HAMILTON-JACOBI-BELLMAN EQUATION
    Zambrini, Jean-Claude
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2009, 1 (03): : 369 - 387