Efficient cancer modeling through CRISPR-Cas9/HDR-based somatic precision gene editing in mice

被引:11
|
作者
Bu, Wen [1 ,2 ]
Creighton, Chad J. [2 ,3 ]
Heavener, Kelsey S. [1 ]
Gutierrez, Carolina [1 ]
Dou, Yongchao [1 ,4 ]
Ku, Amy T. [1 ]
Zhang, Yiqun [3 ]
Jiang, Weiyu [1 ]
Urrutia, Jazmin [1 ]
Jiang, Wen [4 ]
Yue, Fei [1 ,2 ]
Jia, Luyu [1 ]
Ibrahim, Ahmed Atef [1 ]
Zhang, Bing [1 ,4 ]
Huang, Shixia [2 ,5 ,6 ]
Li, Yi [1 ,2 ,5 ]
机构
[1] Baylor Coll Med, Lester & Sue Smith Breast Ctr, Houston, TX 77030 USA
[2] Baylor Coll Med, Dept Med, Houston, TX 77030 USA
[3] Baylor Coll Med, Dan L Duncan Comprehens Canc Ctr, Houston, TX USA
[4] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX USA
[5] Baylor Coll Med, Dept Mol & Cellular Biol, Houston, TX 77030 USA
[6] Baylor Coll Med, Dept Educ Innovat & Technol, Houston, TX USA
基金
美国国家卫生研究院;
关键词
TERMINAL-BINDING-PROTEIN; BETA-CATENIN; BREAST-CANCER; EXPRESSION; ADENOCARCINOMAS; MULTIPOTENCY; LANDSCAPE; REPRESSES; CARCINOMA; INTERACTS;
D O I
10.1126/sciadv.ade0059
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-Cas9 has been used successfully to introduce indels in somatic cells of rodents; however, precise editing of single nucleotides has been hampered by limitations of flexibility and efficiency. Here, we report technological modifications to the CRISPR-Cas9 vector system that now allows homology-directed repair-mediated precise editing of any proto-oncogene in murine somatic tissues to generate tumor models with high flexibility and efficiency. Somatic editing of either Kras or Pik3ca in both normal and hyperplastic mammary glands led to swift tumorigenesis. The resulting tumors shared some histological, transcriptome, and proteome features with tumors induced by lentivirus-mediated expression of the respective oncogenes, but they also exhibited some distinct characteristics, particularly showing less intertumor variation, thus potentially offering more consistent models for cancer studies and therapeutic development. Therefore, this technological advance fills a critical gap between the power of CRISPR technology and high-fidelity mouse models for studying human tumor evolution and preclinical drug testing.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Review of applications of CRISPR-Cas9 gene-editing technology in cancer research
    Zhao, Ziyi
    Li, Chenxi
    Tong, Fei
    Deng, Jingkuang
    Huang, Guofu
    Sang, Yi
    BIOLOGICAL PROCEDURES ONLINE, 2021, 23 (01)
  • [42] CRISPR-Cas9 delivery by DNA nanoclews for efficient genome editing
    Sun, Wujin
    Ji, Wenyan
    Hall, Jordan
    Hu, Quanyin
    Wang, Chao
    Beisel, Chase
    Gu, Zhen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [43] CRISPR-Cas9; an efficient tool for precise plant genome editing
    Islam, Waqar
    MOLECULAR AND CELLULAR PROBES, 2018, 39 : 47 - 52
  • [44] Efficient CRISPR-Cas9 mediated multiplex genome editing in yeasts
    Wang, Laiyou
    Deng, Aihua
    Zhang, Yun
    Liu, Shuwen
    Liang, Yong
    Bai, Hua
    Cui, Di
    Qiu, Qidi
    Shang, Xiuling
    Yang, Zhao
    He, Xiuping
    Wen, Tingyi
    BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
  • [45] A zwitterionic polymer-inspired material mediated efficient CRISPR-Cas9 gene editing
    Lingmin Zhang
    Langyu Yang
    Jionghua Huang
    Sheng Chen
    Chuangjia Huang
    Yinshan Lin
    Ao Shen
    Zhou Yikang Zheng
    Wenfu Zheng
    Shunqing Tang
    AsianJournalofPharmaceuticalSciences, 2022, 17 (05) : 666 - 678
  • [46] CRISPR-Cas9 gene editing of hepatitis B virus in chronically infected humanized mice
    Stone, Daniel
    Long, Kelly R.
    Loprieno, Michelle A.
    Feelixge, Harshana S. De Silva
    Kenkel, Elizabeth J.
    Liley, R. Matt
    Rapp, Stephen
    Roychoudhury, Pavitra
    Thuy Nguyen
    Stensland, Laurence
    Colon-Thillet, Rossana
    Klouser, Lindsay M.
    Weber, Nicholas D.
    Le, Connie
    Wagoner, Jessica
    Goecker, Erin A.
    Li, Alvason Zhenhua
    Eichholz, Karsten
    Corey, Lawrence
    Tyrrell, D. Lorne
    Greninger, Alexander L.
    Huang, Meei-Li
    Polyak, Stephen J.
    Aubert, Martine
    Sagartz, John E.
    Jerome, Keith R.
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2021, 20 : 258 - 275
  • [47] Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation
    Dominguez, Antonia A.
    Lim, Wendell A.
    Qi, Lei S.
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2016, 17 (01) : 5 - 15
  • [48] A zwitterionic polymer-inspired material mediated efficient CRISPR-Cas9 gene editing
    Zhang, Lingmin
    Yang, Langyu
    Huang, Jionghua
    Chen, Sheng
    Huang, Chuangjia
    Lin, Yinshan
    Shen, Ao
    Zheng, ZhouYikang
    Zheng, Wenfu
    Tang, Shunqing
    ASIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2022, 17 (05) : 666 - 678
  • [49] Gene Editing in Trypanosomatids: Tips and Tricks in the CRISPR-Cas9 Era
    Yagoubat, Akila
    Corrales, Rosa M.
    Bastien, Patrick
    Leveque, Maude F.
    Sterkers, Yvon
    TRENDS IN PARASITOLOGY, 2020, 36 (09) : 745 - 760
  • [50] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
    Norton, Mary E.
    OBSTETRICAL & GYNECOLOGICAL SURVEY, 2021, 76 (06) : 327 - 329