Efficient cancer modeling through CRISPR-Cas9/HDR-based somatic precision gene editing in mice

被引:11
|
作者
Bu, Wen [1 ,2 ]
Creighton, Chad J. [2 ,3 ]
Heavener, Kelsey S. [1 ]
Gutierrez, Carolina [1 ]
Dou, Yongchao [1 ,4 ]
Ku, Amy T. [1 ]
Zhang, Yiqun [3 ]
Jiang, Weiyu [1 ]
Urrutia, Jazmin [1 ]
Jiang, Wen [4 ]
Yue, Fei [1 ,2 ]
Jia, Luyu [1 ]
Ibrahim, Ahmed Atef [1 ]
Zhang, Bing [1 ,4 ]
Huang, Shixia [2 ,5 ,6 ]
Li, Yi [1 ,2 ,5 ]
机构
[1] Baylor Coll Med, Lester & Sue Smith Breast Ctr, Houston, TX 77030 USA
[2] Baylor Coll Med, Dept Med, Houston, TX 77030 USA
[3] Baylor Coll Med, Dan L Duncan Comprehens Canc Ctr, Houston, TX USA
[4] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX USA
[5] Baylor Coll Med, Dept Mol & Cellular Biol, Houston, TX 77030 USA
[6] Baylor Coll Med, Dept Educ Innovat & Technol, Houston, TX USA
基金
美国国家卫生研究院;
关键词
TERMINAL-BINDING-PROTEIN; BETA-CATENIN; BREAST-CANCER; EXPRESSION; ADENOCARCINOMAS; MULTIPOTENCY; LANDSCAPE; REPRESSES; CARCINOMA; INTERACTS;
D O I
10.1126/sciadv.ade0059
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-Cas9 has been used successfully to introduce indels in somatic cells of rodents; however, precise editing of single nucleotides has been hampered by limitations of flexibility and efficiency. Here, we report technological modifications to the CRISPR-Cas9 vector system that now allows homology-directed repair-mediated precise editing of any proto-oncogene in murine somatic tissues to generate tumor models with high flexibility and efficiency. Somatic editing of either Kras or Pik3ca in both normal and hyperplastic mammary glands led to swift tumorigenesis. The resulting tumors shared some histological, transcriptome, and proteome features with tumors induced by lentivirus-mediated expression of the respective oncogenes, but they also exhibited some distinct characteristics, particularly showing less intertumor variation, thus potentially offering more consistent models for cancer studies and therapeutic development. Therefore, this technological advance fills a critical gap between the power of CRISPR technology and high-fidelity mouse models for studying human tumor evolution and preclinical drug testing.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] CRISPR-Cas9 Based Bacteriophage Genome Editing
    Zhang, Xueli
    Zhang, Chaohui
    Liang, Caijiao
    Li, Bizhou
    Meng, Fanmei
    Ai, Yuncan
    MICROBIOLOGY SPECTRUM, 2022, 10 (04):
  • [22] Application of CRISPR-Cas9 gene editing to treat HBV
    Yan, Kun
    Feng, Jiangpeng
    Xiong, Yong
    Chen, Yu
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (30): : 3142 - 3150
  • [23] CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis
    Rim, John Hoon
    Gopalappa, Ramu
    Gee, Heon Yung
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 385 (18): : 1722 - 1722
  • [24] Precision Genome Editing: Identification of Highly Efficient and Specific Guides for CRISPR-Cas9 Gene Editing in Human T Cell Loci
    Garner, Elizabeth
    Donohoue, Paul
    Lau, Elaine
    Vidal, Bastien
    Settle, Alex
    Irby, Matthew
    Rotstein, Tomer
    Banh, Lynda
    Toh, Mckenzi
    Williams, Carolyn
    Smith, Stephen
    Gradia, Scott
    Stengel, Katharina
    Kohrs, Bryan
    Fuller, Christopher
    Kennedy, Rachel
    Eshghi, Shawdee
    Slorach, Euan
    van Overbeek, Megan
    May, Andrew
    Kanner, Steven
    MOLECULAR THERAPY, 2019, 27 (04) : 388 - 388
  • [25] Trichostatin A for Efficient CRISPR-Cas9 Gene Editing of Human Pluripotent Stem Cells
    Molugu, Kaivalya
    Khajanchi, Namita
    Lazzarotto, Cicera R.
    Tsai, Shengdar Q.
    Saha, Krishanu
    CRISPR JOURNAL, 2023, 6 (05): : 473 - 485
  • [26] CRISPR-cas9 gene editing in undergraduate laboratory experience
    Kee, H. Lynn
    Pieczynski, Jay
    FASEB JOURNAL, 2019, 33
  • [27] Efficient gene editing in hematopoietic stem/progenitor cells with the CRISPR-Cas9 system
    Gori, J. L.
    Heath, J. M.
    Collins, M. A.
    Fang, J. W.
    Friedland, A. E.
    Welstead, G. G.
    Bumcrot, D.
    HUMAN GENE THERAPY, 2015, 26 (10) : A49 - A49
  • [28] Treatment by CRISPR-Cas9 Gene Editing - A Proof of Principle
    Malech, Harry L.
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (03): : 286 - 287
  • [29] NOBEL PRIZE FOR CHEMISTRY Gene Editing with CRISPR-Cas9
    Welter, Kira
    CHEMIE IN UNSERER ZEIT, 2020, 54 (06) : 346 - 350
  • [30] CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis
    Gillmore, Julian D.
    Gane, Ed
    Taubel, Jorg
    Kao, Justin
    Fontana, Marianna
    Maitland, Michael L.
    Seitzer, Jessica
    O'Connell, Daniel
    Walsh, Kathryn R.
    Wood, Kristy
    Phillips, Jonathan
    Xu, Yuanxin
    Amaral, Adam
    Boyd, Adam P.
    Cehelsky, Jeffrey E.
    McKee, Mark D.
    Schiermeier, Andrew
    Harari, Olivier
    Murphy, Andrew
    Kyratsous, Christos A.
    Zambrowicz, Brian
    Soltys, Randy
    Gutstein, David E.
    Leonard, John
    Sepp-Lorenzino, Laura
    Lebwohl, David
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 385 (06): : 493 - 502