Selective catalytic hydrodeoxygenation of vanillin to 2-Methoxy-4-methyl phenol and 4-Methyl cyclohexanol over Pd/CuFe2O4 and PdNi/CuFe2O4 catalysts

被引:23
|
作者
More, Ganesh Sunil [1 ]
Kanchan, Dipika Rajendra [2 ]
Banerjee, Arghya [2 ]
Srivastava, Rajendra [1 ]
机构
[1] Indian Inst Technol Ropar, Dept Chem, Catalysis Res Lab, Rupnagar 140001, Punjab, India
[2] Indian Inst Technol Ropar, Dept Chem Engn, Rupnagar 140001, Punjab, India
关键词
Biomass; Vanillin hydrodeoxygenation; PdNi-alloy; Methyl cyclohexanol; Density functional theory; TOTAL-ENERGY CALCULATIONS; WALLED CARBON NANOTUBES; TRANSFER HYDROGENATION; NI NANOPARTICLES; BIOMASS; ACID; REDUCTION; ADIPONITRILE; PERFORMANCE; TRANSITION;
D O I
10.1016/j.cej.2023.142110
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The development of a sustainable catalytic process for the hydrodeoxygenation of lignin model compounds to renewable fuels and chemicals is essential to meet the requirement of a fossil-fuel-free modern society. Herein a Pd/CuFe2O4 and bimetallic PdNi/CuFe2O4 catalysts were developed for the hydrodeoxygenation of vanillin to 2methoxy-4-methylphenol (MMP) and 4-methyl cyclohexanol (4-MC), respectively. The Pd/CuFe2O4 provided selective catalytic transfer hydrodeoxygenation of vanillin to MMP with isopropanol (IPA). The synergistic participation of Pd NPs and CuFe2O4 (1Pd/CuFe2O4) afforded 99.4% vanillin conversion and 99.2% MMP selectivity at 150 degrees C. The acidity of the catalyst facilitated the efficient adsorption of vanillin and IPA, and the high dispersion of Pd NPs lowered the hydrogen abstraction barrier of IPA to facilitate the transformation. Then Ni was incorporated into Pd/CuFe2O4 to produce 4-methyl cyclohexanol from vanillin. The interfacial interaction between Pd and Ni over CuFe2O4 (1Pd7Ni/CuFe2O4) provided 95.8% 4-methyl cyclohexanol (4-MC) in H2 (20 bar) at 180 degrees C. The acidity of the catalyst, formation of Pd-Ni alloys, and efficient adsorption of vanillin and MMP were responsible for the high activity of the catalyst towards 4-methyl cyclohexanol (4-MC) production. Density functional theory (DFT) calculations were also performed to elucidate the reaction mechanism for vanillin transformation to MMP and 4-MC on the Pd/CuFe2O4 and bimetallic PdNi/CuFe2O4 catalysts.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Mossbauer studies of nanosize CuFe2O4 particles
    Gajbhiye, NS
    Balaji, G
    Bhattacharyya, S
    Ghafari, M
    HYPERFINE INTERACTIONS, 2004, 156 (01): : 57 - 61
  • [22] Nanocrystalline CuFe2O4 obtained by mechanical grinding
    Goya, GF
    JOURNAL OF MATERIALS SCIENCE LETTERS, 1997, 16 (07) : 563 - 565
  • [23] Structural phase transition in CuFe2O4 spinel
    Balagurov, A. M.
    Bobrikov, I. A.
    Maschenko, M. S.
    Sangaa, D.
    Simkin, V. G.
    CRYSTALLOGRAPHY REPORTS, 2013, 58 (05) : 710 - 717
  • [24] Structural phase transition in CuFe2O4 spinel
    A. M. Balagurov
    I. A. Bobrikov
    M. S. Maschenko
    D. Sangaa
    V. G. Simkin
    Crystallography Reports, 2013, 58 : 710 - 717
  • [25] Preparation and Magnetic Properties of CuFe2O4 Nanoparticles
    Jiao, Hua
    Jiao, Gengsheng
    Wang, Junlong
    SYNTHESIS AND REACTIVITY IN INORGANIC METAL-ORGANIC AND NANO-METAL CHEMISTRY, 2013, 43 (02) : 131 - 134
  • [26] MAGNETOCRYSTALLINE ANISOTROPY OF TETRAGONAL PHASE CUFE2O4
    NAGATA, H
    MIYADAI, T
    MIYAHARA, S
    IEEE TRANSACTIONS ON MAGNETICS, 1972, MAG8 (03) : 451 - 453
  • [27] Polynuclear coordination compounds as precursors for CuFe2O4
    Marinescu, G
    Patron, L
    Carp, O
    Diamandescu, L
    Stanica, N
    Meghea, A
    Brezeanu, M
    Grenier, JC
    Etourneau, J
    JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (12) : 3458 - 3462
  • [28] Synthesis and Properties of Thin CuFe2O4 Films
    Popova, V. Yu.
    Petrov, V.V.
    Gulyaeva, I.A.
    Ivanishcheva, A.P.
    Tolstunov, M.I.
    Bayan, E.M.
    Russian Journal of Applied Chemistry, 2022, 95 (08): : 1129 - 1135
  • [29] Computational study of copper ferrite (CuFe2O4)
    Zuo, Xu
    Yang, Aria
    Vittoria, Carmine
    Harris, Vincent G.
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)
  • [30] Magnetic and catalytic properties of inverse spinel CuFe2O4 nanoparticles
    Anandan, S.
    Selvamani, T.
    Prasad, G. Guru
    Asiri, A. M.
    Wu, J. J.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 432 : 437 - 443