Measurement-device-independent quantum key agreement based on entanglement swapping

被引:2
|
作者
Yang, Yu-Guang [1 ]
Huang, Rui-Chen [1 ]
Xu, Guang-Bao [2 ]
Zhou, Yi-Hua [1 ]
Shi, Wei-Min [1 ]
Li, Dan [3 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum key agreement; Measurement-device-independent; Detector-side-channel attack; Quantum entanglement swapping; Bell-state measurement; PRIVATE DATABASE QUERIES; BELL-STATES; PROTOCOL;
D O I
10.1007/s11128-023-04189-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key agreement (QKA) is an important cryptographic primitive that plays a pivotal role in private communications. However, in practical implementations of QKA, the flaws in participants' detectors may be exploited to compromise the security and fairness of the protocol. To address this issue, we propose a two-party measurement-device-independent QKA protocol, effectively eliminating all detector-side-channel loopholes. This protocol is based on quantum entanglement swapping and Bell-state measurements, making it feasible under current technological conditions. A thorough security analysis is conducted, demonstrating its ability to guarantee both security and fairness.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Field Test of Measurement-Device-Independent Quantum Key Distribution
    Tang, Yan-Lin
    Yin, Hua-Lei
    Chen, Si-Jing
    Liu, Yang
    Zhang, Wei-Jun
    Jiang, Xiao
    Zhang, Lu
    Wang, Jian
    You, Li-Xing
    Guan, Jian-Yu
    Yang, Dong-Xu
    Wang, Zhen
    Liang, Hao
    Zhang, Zhen
    Zhou, Nan
    Ma, Xiongfeng
    Chen, Teng-Yun
    Zhang, Qiang
    Pan, Jian-Wei
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2015, 21 (03) : 116 - 122
  • [42] New scheme for measurement-device-independent quantum key distribution
    Lian Wang
    Yuan-Yuan Zhou
    Xue-Jun Zhou
    Xiao Chen
    Zheng Zhang
    Quantum Information Processing, 2018, 17
  • [43] Intensity correlations in measurement-device-independent quantum key distribution
    Liu, Junxuan
    Xing, Tianyi
    Liu, Ruiyin
    Chen, Zihao
    Tan, Hao
    Huang, Anqi
    OPTICS EXPRESS, 2024, 32 (22): : 38394 - 38406
  • [44] Modeling a measurement-device-independent quantum key distribution system
    Chan, P.
    Slater, J. A.
    Lucio-Martinez, I.
    Rubenok, A.
    Tittel, W.
    OPTICS EXPRESS, 2014, 22 (11): : 12716 - 12736
  • [45] Measurement-device-independent quantum key distribution with leaky sources
    Wang, Weilong
    Tamaki, Kiyoshi
    Curty, Marcos
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [46] New scheme for measurement-device-independent quantum key distribution
    Wang, Lian
    Zhou, Yuan-Yuan
    Zhou, Xue-Jun
    Chen, Xiao
    Zhang, Zheng
    QUANTUM INFORMATION PROCESSING, 2018, 17 (09)
  • [47] Afterpulse effect in measurement-device-independent quantum key distribution
    Wang, Ze-Hao
    Wang, Shuang
    Fan-Yuan, Guan-Jie
    Lu, Feng-Yu
    Yin, Zhen-Qiang
    Chen, Wei
    He, De-Yong
    Guo, Guang-Can
    Han, Zheng-Fu
    OPTICS EXPRESS, 2022, 30 (16): : 28534 - 28549
  • [48] Multiparty Quantum Key Agreement Protocol with Entanglement Swapping
    Zhao, Xing-Qiang
    Zhou, Nan-Run
    Chen, Hua-Ying
    Gong, Li-Hua
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (02) : 436 - 450
  • [49] Multiparty Quantum Key Agreement Protocol with Entanglement Swapping
    Xing-Qiang Zhao
    Nan-Run Zhou
    Hua-Ying Chen
    Li-Hua Gong
    International Journal of Theoretical Physics, 2019, 58 : 436 - 450
  • [50] Practical measurement-device-independent entanglement quantification
    Rosset, Denis
    Martin, Anthony
    Verbanis, Ephanielle
    Lim, Charles Ci Wen
    Thew, Rob
    PHYSICAL REVIEW A, 2018, 98 (05)