Measurement-device-independent quantum key agreement based on entanglement swapping

被引:2
|
作者
Yang, Yu-Guang [1 ]
Huang, Rui-Chen [1 ]
Xu, Guang-Bao [2 ]
Zhou, Yi-Hua [1 ]
Shi, Wei-Min [1 ]
Li, Dan [3 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum key agreement; Measurement-device-independent; Detector-side-channel attack; Quantum entanglement swapping; Bell-state measurement; PRIVATE DATABASE QUERIES; BELL-STATES; PROTOCOL;
D O I
10.1007/s11128-023-04189-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key agreement (QKA) is an important cryptographic primitive that plays a pivotal role in private communications. However, in practical implementations of QKA, the flaws in participants' detectors may be exploited to compromise the security and fairness of the protocol. To address this issue, we propose a two-party measurement-device-independent QKA protocol, effectively eliminating all detector-side-channel loopholes. This protocol is based on quantum entanglement swapping and Bell-state measurements, making it feasible under current technological conditions. A thorough security analysis is conducted, demonstrating its ability to guarantee both security and fairness.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Experimental Measurement-Device-Independent Quantum Key Distribution
    Liu, Yang
    Chen, Teng-Yun
    Wang, Liu-Jun
    Liang, Hao
    Shentu, Guo-Liang
    Wang, Jian
    Cui, Ke
    Yin, Hua-Lei
    Liu, Nai-Le
    Li, Li
    Ma, Xiongfeng
    Pelc, Jason S.
    Fejer, M. M.
    Peng, Cheng-Zhi
    Zhang, Qiang
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2013, 111 (13)
  • [22] Hacking measurement-device-independent quantum key distribution
    Lu, Feng-Yu
    Ye, Peng
    Wang, Ze-Hao
    Wang, Shuang
    Yin, Zhen-Qiang
    Wang, Rong
    Huang, Xiao-Jua
    Chen, Wei
    He, De-Yong
    Fan-Yuan, Guan-Je
    Guo, Guang-Can
    Han, Zheng-Fu
    OPTICA, 2023, 10 (04): : 520 - 527
  • [23] Measurement-device-independent Quantum Key Distribution based on W state
    Hu, Min
    Guo, Banghong
    SEVENTH SYMPOSIUM ON NOVEL PHOTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS, 2021, 11763
  • [24] Satellite-based measurement-device-independent quantum key distribution
    Liang, Wentao
    Jiao, Rongzhen
    NEW JOURNAL OF PHYSICS, 2020, 22 (08):
  • [25] Chip-based measurement-device-independent quantum key distribution
    Semenenko, Henry
    Sibson, Philip
    Hart, Andy
    Thompson, Mark G.
    Rarity, John G.
    Erven, Chris
    OPTICA, 2020, 7 (03): : 238 - 242
  • [26] Measurement-device-independent entanglement and randomness estimation in quantum networks
    Supic, Ivan
    Skrzypczyk, Paul
    Cavalcanti, Daniel
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [27] Measurement-device-independent quantum key distribution via quantum blockade
    Zhou, Yi-Heng
    Yu, Zong-Wen
    Li, Ao
    Hu, Xiao-Long
    Jiang, Cong
    Wang, Xiang-Bin
    SCIENTIFIC REPORTS, 2018, 8
  • [28] Measurement-Device-Independent Quantum Key Distribution With Ensemble-Based Memories
    Lo Piparo, Nicolo
    Razavi, Mohsen
    Panayi, Christiana
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2015, 21 (03) : 138 - 147
  • [29] Feasibility of space-based measurement-device-independent quantum key distribution
    Wang, Xingyu
    Dong, Chen
    Zhao, Shanghong
    Liu, Yong
    Liu, Xiaowen
    Zhu, Haonan
    NEW JOURNAL OF PHYSICS, 2021, 23 (04):
  • [30] Measurement-device-independent quantum key distribution with insecure sources
    Ding, Hua-Jian
    Zhou, Xing-Yu
    Zhang, Chun-Hui
    Li, Jian
    Wang, Qin
    OPTICS LETTERS, 2022, 47 (03) : 665 - 668