Application of Robust Model Predictive Control Using Principal Component Analysis to an Industrial Thickener

被引:0
|
作者
Jia, Runda [1 ]
You, Fengqi [2 ]
机构
[1] Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110004, Peoples R China
[2] Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
关键词
Pressure sensors; Slurries; Linear systems; Safety; Mathematical models; Principal component analysis; Predictive models; Data-driven robust optimization; model predictive control (MPC); principal component analysis (PCA); thickener; OPTIMIZATION;
D O I
10.1109/TCST.2024.3355012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A data-driven robust model predictive control (DRMPC) method is used in this brief to control an industrial thickener. To estimate the future states of the thickener, a discrete-time linear time-invariant (LTI) model is employed using the data information from the pressure sensors installed inside the thickener. The hard constraints on the amount of dry ores in the thickener and the underflow concentration are considered in the thickening process, and a robust model predictive control (RMPC) framework based on the affine disturbance feedback (ADF) technique is developed. To better describe the prediction errors of the LTI model of the thickener, principal component analysis (PCA) is employed to properly construct the uncertainty set from the historical data. Case studies based on a simulation platform and an industrial thickener are presented to evaluate the efficiency of the method.
引用
收藏
页码:1090 / 1097
页数:8
相关论文
共 50 条
  • [41] A review on robust principal component analysis
    Lee, Eunju
    Park, Mingyu
    Kim, Choongrak
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (02) : 327 - 333
  • [42] Multilinear robust principal component analysis
    Shi, Jia-Rong
    Zhou, Shui-Sheng
    Zheng, Xiu-Yun
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1480 - 1486
  • [43] Robust Discriminative Principal Component Analysis
    Xu, Xiangxi
    Lai, Zhihui
    Chen, Yudong
    Kong, Heng
    [J]. BIOMETRIC RECOGNITION, CCBR 2018, 2018, 10996 : 231 - 238
  • [44] Double robust principal component analysis
    Wang, Qianqian
    Gao, QuanXue
    Sun, Gan
    Ding, Chris
    [J]. NEUROCOMPUTING, 2020, 391 : 119 - 128
  • [45] Flexible robust principal component analysis
    He, Zinan
    Wu, Jigang
    Han, Na
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (03) : 603 - 613
  • [46] Double robust principal component analysis
    Wang Q.
    Gao Q.
    Sun G.
    Ding C.
    [J]. Neurocomputing, 2022, 391 : 119 - 128
  • [47] Robust algorithms for principal component analysis
    Yang, TN
    Wang, SD
    [J]. PATTERN RECOGNITION LETTERS, 1999, 20 (09) : 927 - 933
  • [48] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    [J]. Science China Information Sciences, 2014, 57 : 1 - 14
  • [49] Adaptive robust principal component analysis
    Liu, Yang
    Gao, Xinbo
    Gao, Quanxue
    Shao, Ling
    Han, Jungong
    [J]. NEURAL NETWORKS, 2019, 119 : 85 - 92
  • [50] Incomplete robust principal component analysis
    Shi, Jiarong
    Zheng, Xiuyun
    Yong, Longquan
    [J]. ICIC Express Letters, Part B: Applications, 2014, 5 (06): : 1531 - 1538