Pareto optimal solution set strategy based on multiobjective optimization for the clinching tools

被引:2
|
作者
Xu, Fan [1 ,2 ]
Gao, Ming [2 ]
Ma, Chao [1 ]
Zhao, Huiyan [3 ]
Zhu, Jianxiong [1 ]
Zhang, Zhen [1 ]
机构
[1] Univ Sci & Technol LiaoNing, Sch Mech Engn & Automat, 189 Qianshan Ctr Rd, Anshan 114051, Peoples R China
[2] Jiangsu Univ, Sch Mech Engn, 301 Xuefu Rd, Zhenjiang 212013, Peoples R China
[3] Yingkou Inst Technol, Sch Mech & Power Engn, 46 Bowen Rd, Yingkou 115014, Peoples R China
关键词
Clinched joint; Optimization design; Necking thickness; Interlocking thickness; Pareto solution; SHAPE OPTIMIZATION; FAILURE BEHAVIOR; ALLOY; JOINT; METHODOLOGY; ALGORITHM; STRENGTH; ALUMINUM;
D O I
10.1007/s00170-023-12133-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The geometric size of clinching tools determines the geometric size and strength of the clinched joints. This study establishes an orthogonal analysis experimental plan to examine how the geometric size of a tool affects the objective functions of a clinched joint, including its bottom, necking, and interlocking thicknesses. Particularly, the study evaluates the effects of die radius, die depth, punch stroke, punch radius, and punch fillet on the geometric size of the clinched joint. A multiple quadratic regression model is used to quantitatively analyze the contribution value of the feature parameters of the tool to the objective function. Furthermore, a multiobjective genetic algorithm based on the Pareto solution is used to solve the multiple quadratic regression model, and the optimal combination size of the tool is determined by comparing theoretical and simulation calculations. The optimal die radius is 4.6 mm, the die height is 1.10 mm, the punch stroke is 4.1 mm, the punch is 2.6 mm, and the punch fillet is 0.5 mm. These parameters are used to manufacture a pair of tool for improving clinched joint quality.
引用
收藏
页码:3375 / 3389
页数:15
相关论文
共 50 条
  • [41] Pareto-based continuous evolutionary algorithms for multiobjective optimization
    Shim, MB
    Suh, MW
    Furukawa, T
    Yagawa, G
    Yoshimura, S
    ENGINEERING COMPUTATIONS, 2002, 19 (1-2) : 22 - 48
  • [42] Grey wolves attack process for the Pareto optimal front construction in the multiobjective optimization
    Bamogo, Wendinda
    Some, Kounhinir
    Poda, Joseph
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01): : 595 - 608
  • [43] Finding the Set of Nearly Optimal Solutions of a Multiobjective Optimization Problem
    Schutze, Oliver
    Rodriguez-Fernandez, Angel E.
    Segura, Carlos
    Hernandez, Carlos
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2025, 29 (01) : 145 - 157
  • [44] Representation of Solution for Multiobjective Optimization : RSMO for Generating a Su sant Pareto Front
    Zidani, Hafid
    Ellaia, Rachid
    De Cursi, E. Souza
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND SYSTEMS MANAGEMENT (IEEE-IESM 2013), 2013, : 463 - 463
  • [45] An efficient pareto set identification approach for multiobjective optimization on black-box functions
    Shan, SQ
    Wang, GG
    JOURNAL OF MECHANICAL DESIGN, 2005, 127 (05) : 866 - 874
  • [46] Subdifferentials and Stability Analysis of Feasible Set and Pareto Front Mappings in Linear Multiobjective Optimization
    Canovas, M. J.
    Lopez, M. A.
    Mordukhovich, B. S.
    Parra, J.
    VIETNAM JOURNAL OF MATHEMATICS, 2020, 48 (02) : 315 - 334
  • [47] Subdifferentials and Stability Analysis of Feasible Set and Pareto Front Mappings in Linear Multiobjective Optimization
    M. J. Cánovas
    M. A. López
    B. S. Mordukhovich
    J. Parra
    Vietnam Journal of Mathematics, 2020, 48 : 315 - 334
  • [48] Metrics for quality assessment of a multiobjective design optimization solution set
    Wu, J
    Azarm, S
    JOURNAL OF MECHANICAL DESIGN, 2001, 123 (01) : 18 - 25
  • [49] Adjustable robust multiobjective linear optimization: Pareto optimal solutions via conic programming
    Chuong, T. D.
    Jeyakumar, V.
    ANNALS OF OPERATIONS RESEARCH, 2022, 346 (2) : 895 - 916
  • [50] Local Model-Based Pareto Front Estimation for Multiobjective Optimization
    Tian, Ye
    Si, Langchun
    Zhang, Xingyi
    Tan, Kay Chen
    Jin, Yaochu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (01): : 623 - 634