Pareto optimal solution set strategy based on multiobjective optimization for the clinching tools

被引:2
|
作者
Xu, Fan [1 ,2 ]
Gao, Ming [2 ]
Ma, Chao [1 ]
Zhao, Huiyan [3 ]
Zhu, Jianxiong [1 ]
Zhang, Zhen [1 ]
机构
[1] Univ Sci & Technol LiaoNing, Sch Mech Engn & Automat, 189 Qianshan Ctr Rd, Anshan 114051, Peoples R China
[2] Jiangsu Univ, Sch Mech Engn, 301 Xuefu Rd, Zhenjiang 212013, Peoples R China
[3] Yingkou Inst Technol, Sch Mech & Power Engn, 46 Bowen Rd, Yingkou 115014, Peoples R China
关键词
Clinched joint; Optimization design; Necking thickness; Interlocking thickness; Pareto solution; SHAPE OPTIMIZATION; FAILURE BEHAVIOR; ALLOY; JOINT; METHODOLOGY; ALGORITHM; STRENGTH; ALUMINUM;
D O I
10.1007/s00170-023-12133-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The geometric size of clinching tools determines the geometric size and strength of the clinched joints. This study establishes an orthogonal analysis experimental plan to examine how the geometric size of a tool affects the objective functions of a clinched joint, including its bottom, necking, and interlocking thicknesses. Particularly, the study evaluates the effects of die radius, die depth, punch stroke, punch radius, and punch fillet on the geometric size of the clinched joint. A multiple quadratic regression model is used to quantitatively analyze the contribution value of the feature parameters of the tool to the objective function. Furthermore, a multiobjective genetic algorithm based on the Pareto solution is used to solve the multiple quadratic regression model, and the optimal combination size of the tool is determined by comparing theoretical and simulation calculations. The optimal die radius is 4.6 mm, the die height is 1.10 mm, the punch stroke is 4.1 mm, the punch is 2.6 mm, and the punch fillet is 0.5 mm. These parameters are used to manufacture a pair of tool for improving clinched joint quality.
引用
收藏
页码:3375 / 3389
页数:15
相关论文
共 50 条
  • [1] Pareto optimal solution set strategy based on multiobjective optimization for the clinching tools
    Fan Xu
    Ming Gao
    Chao Ma
    Huiyan Zhao
    Jianxiong Zhu
    Zhen Zhang
    The International Journal of Advanced Manufacturing Technology, 2023, 128 : 3375 - 3389
  • [2] A new prediction-based evolutionary dynamic multiobjective optimization algorithm aided by Pareto optimal solution estimation strategy
    Gao, Kai
    Xu, Lihong
    APPLIED SOFT COMPUTING, 2024, 165
  • [3] A NEW PARETO OPTIMAL SOLUTION IN A LAGRANGE DECOMPOSABLE MULTIOBJECTIVE OPTIMIZATION PROBLEM
    KOPSIDAS, GC
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1991, 42 (05) : 401 - 411
  • [4] Multiobjective Optimization Method for Distribution System Configuration Using Pareto Optimal Solution
    Hayashi, Yasuhiro
    Takano, Hirotaka
    Matsuki, Junya
    Nishikawa, Yuji
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2011, 94 (01) : 7 - 16
  • [5] Structure and Weak Sharp Minimum of the Pareto Solution Set for Piecewise Linear Multiobjective Optimization
    Yang, X. Q.
    Yen, N. D.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 147 (01) : 113 - 124
  • [6] Structure and Weak Sharp Minimum of the Pareto Solution Set for Piecewise Linear Multiobjective Optimization
    X. Q. Yang
    N. D. Yen
    Journal of Optimization Theory and Applications, 2010, 147 : 113 - 124
  • [7] A Method for Selecting Pareto Optimal Solutions in Multiobjective Optimization
    Cheikh, Mohamed
    Jarboui, Bassem
    Loukil, Ta Cir
    Siarry, Patrick
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2010, 2 (01): : 51 - 62
  • [8] Differential evolution guided by approximated Pareto set for multiobjective optimization
    Wang, Shuai
    Zhou, Aimin
    Li, Bingdong
    Yang, Peng
    INFORMATION SCIENCES, 2023, 630 : 669 - 687
  • [9] Set contraction algorithm for computing Pareto set in nonconvex nonsmooth multiobjective optimization
    Galperin, EA
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (7-8) : 847 - 859
  • [10] Pareto optimal solution and optimization method
    Beijing Univ of Aeronautics and, Astronautics, Beijing, China
    Beijing Hangkong Hangtian Daxue Xuebao, 2 (206-211):